Reflections on the Foundations of Mathematics

Reflections on the Foundations of Mathematics

Author: Wilfried Sieg

Publisher: Cambridge University Press

Published: 2017-03-30

Total Pages: 456

ISBN-13: 1316998819

DOWNLOAD EBOOK

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the fifteenth publication in the Lecture Notes in Logic series, collects papers presented at the symposium 'Reflections on the Foundations of Mathematics' held in celebration of Solomon Feferman's 70th birthday (The 'Feferfest') at Stanford University, California in 1988. Feferman has shaped the field of foundational research for nearly half a century. These papers reflect his broad interests as well as his approach to foundational research, which emphasizes the solution of mathematical and philosophical problems. There are four sections, covering proof theoretic analysis, logic and computation, applicative and self-applicative theories, and philosophy of modern mathematical and logic thought.


Axiomatic Thinking II

Axiomatic Thinking II

Author: Fernando Ferreira

Publisher: Springer Nature

Published: 2022-09-17

Total Pages: 293

ISBN-13: 3030777995

DOWNLOAD EBOOK

In this two-volume compilation of articles, leading researchers reevaluate the success of Hilbert's axiomatic method, which not only laid the foundations for our understanding of modern mathematics, but also found applications in physics, computer science and elsewhere. The title takes its name from David Hilbert's seminal talk Axiomatisches Denken, given at a meeting of the Swiss Mathematical Society in Zurich in 1917. This marked the beginning of Hilbert's return to his foundational studies, which ultimately resulted in the establishment of proof theory as a new branch in the emerging field of mathematical logic. Hilbert also used the opportunity to bring Paul Bernays back to Göttingen as his main collaborator in foundational studies in the years to come. The contributions are addressed to mathematical and philosophical logicians, but also to philosophers of science as well as physicists and computer scientists with an interest in foundations.


Mathematical Thought and its Objects

Mathematical Thought and its Objects

Author: Charles Parsons

Publisher: Cambridge University Press

Published: 2007-12-24

Total Pages: 400

ISBN-13: 1139467271

DOWNLOAD EBOOK

Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition and presents a conception of it distantly inspired by that of Kant, which describes a basic kind of access to abstract objects and an element of a first conception of the infinite.


The Prehistory of Mathematical Structuralism

The Prehistory of Mathematical Structuralism

Author: Erich H. Reck

Publisher: Oxford University Press

Published: 2020

Total Pages: 469

ISBN-13: 0190641223

DOWNLOAD EBOOK

This edited volume explores the previously underacknowledged 'pre-history' of mathematical structuralism, showing that structuralism has deep roots in the history of modern mathematics. The contributors explore this history along two distinct but interconnected dimensions. First, they reconsider the methodological contributions of major figures in the history of mathematics. Second, they re-examine a range of philosophical reflections from mathematically-inclinded philosophers like Russell, Carnap, and Quine, whose work led to profound conclusions about logical, epistemological, and metaphysic.


Kurt Gödel and the Foundations of Mathematics

Kurt Gödel and the Foundations of Mathematics

Author: Matthias Baaz

Publisher: Cambridge University Press

Published: 2011-06-06

Total Pages: 541

ISBN-13: 1139498436

DOWNLOAD EBOOK

This volume commemorates the life, work and foundational views of Kurt Gödel (1906–78), most famous for his hallmark works on the completeness of first-order logic, the incompleteness of number theory, and the consistency - with the other widely accepted axioms of set theory - of the axiom of choice and of the generalized continuum hypothesis. It explores current research, advances and ideas for future directions not only in the foundations of mathematics and logic, but also in the fields of computer science, artificial intelligence, physics, cosmology, philosophy, theology and the history of science. The discussion is supplemented by personal reflections from several scholars who knew Gödel personally, providing some interesting insights into his life. By putting his ideas and life's work into the context of current thinking and perceptions, this book will extend the impact of Gödel's fundamental work in mathematics, logic, philosophy and other disciplines for future generations of researchers.


The Foundations of Computability Theory

The Foundations of Computability Theory

Author: Borut Robič

Publisher: Springer Nature

Published: 2020-11-13

Total Pages: 422

ISBN-13: 3662624214

DOWNLOAD EBOOK

This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism. In Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability. In Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. Finally, in the new Part IV the author revisits the computability (Church-Turing) thesis in greater detail. He offers a systematic and detailed account of its origins, evolution, and meaning, he describes more powerful, modern versions of the thesis, and he discusses recent speculative proposals for new computing paradigms such as hypercomputing. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science. This new edition is completely revised, with almost one hundred pages of new material. In particular the author applied more up-to-date, more consistent terminology, and he addressed some notational redundancies and minor errors. He developed a glossary relating to computability theory, expanded the bibliographic references with new entries, and added the new part described above and other new sections.


Turing’s Revolution

Turing’s Revolution

Author: Giovanni Sommaruga

Publisher: Birkhäuser

Published: 2016-01-21

Total Pages: 329

ISBN-13: 3319221566

DOWNLOAD EBOOK

This book provides an overview of the confluence of ideas in Turing’s era and work and examines the impact of his work on mathematical logic and theoretical computer science. It combines contributions by well-known scientists on the history and philosophy of computability theory as well as on generalised Turing computability. By looking at the roots and at the philosophical and technical influence of Turing’s work, it is possible to gather new perspectives and new research topics which might be considered as a continuation of Turing’s working ideas well into the 21st century.


The Vienna Circle and Logical Empiricism

The Vienna Circle and Logical Empiricism

Author: F. Stadler

Publisher: Springer Science & Business Media

Published: 2006-06-09

Total Pages: 422

ISBN-13: 0306482142

DOWNLOAD EBOOK

This work is for scholars, researchers and students in history and philosophy of science focusing on Logical Empiricism and analytic philosophy (of science). It provides historical and systematic research and deals with the influence and impact of the Vienna Circle/Logical Empiricism on today's philosophy of science. It also explores the intellectual context of this scientific philosophy and focuses on main figures and peripheral adherents.