Redox and Cancer Part A

Redox and Cancer Part A

Author:

Publisher: Academic Press

Published: 2014-06-25

Total Pages: 351

ISBN-13: 0124201768

DOWNLOAD EBOOK

Advances in Cancer Research provides invaluable information on the exciting and fast-moving field of cancer research. Here, once again, outstanding and original reviews are presented on a variety of topics — Volume 122 explores subjects related to redox, including: redox homeostasis in epithelial-derived cancers; reactive oxygen species in normal and tumor stem cells; and gamma-glutamyl transpeptidase and redox regulation. Provides information on cancer research Outstanding and original reviews Suitable for researchers and students


Redox and Metabolic Circuits in Cancer

Redox and Metabolic Circuits in Cancer

Author: Salvatore Rizza

Publisher: Frontiers Media SA

Published: 2018-12-21

Total Pages: 183

ISBN-13: 2889456358

DOWNLOAD EBOOK

Living cells require a constant supply of energy for the orchestration of a variety of biological processes in fluctuating environmental conditions. In heterotrophic organisms, energy mainly derives from the oxidation of carbohydrates and lipids, whose chemical bonds breakdown allows electrons to generate ATP and to provide reducing equivalents needed to restore the antioxidant systems and prevent from damage induced by reactive oxygen and nitric oxide (NO)-derived species (ROS and RNS). Studies of the last two decades have highlighted that cancer cells reprogram the metabolic circuitries in order to sustain their high growth rate, invade other tissues, and escape death. Therefore, this broad metabolic reorganization is mandatory for neoplastic growth, allowing the generation of adequate amounts of ATP and metabolites, as well as the optimization of redox homeostasis in the changeable environmental conditions of the tumor mass. Among these, ROS, as well as NO and RNS, which are produced at high extent in the tumor microenvironment or intracellularly, have been demonstrated acting as positive modulators of cell growth and frequently associated with malignant phenotype. Metabolic changes are also emerging as primary drivers of neoplastic onset and growth, and alterations of mitochondrial metabolism and homeostasis are emerging as pivotal in driving tumorigenesis. Targeting the metabolic rewiring, as well as affecting the balance between production and scavenging of ROS and NO-derived species, which underpin cancer growth, opens the possibility of finding selective and effective anti-neoplastic approaches, and new compounds affecting metabolic and/or redox adaptation of cancer cells are emerging as promising chemotherapeutic tools. In this Research Topic we have elaborated on all these aspects and provided our contribution to this increasingly growing field of research with new results, opinions and general overviews about the extraordinary plasticity of cancer cells to change metabolism and redox homeostasis in order to overcome the adverse conditions and sustain their “individualistic” behavior under a teleonomic viewpoint.


Redox-Active Therapeutics

Redox-Active Therapeutics

Author: Ines Batinić-Haberle

Publisher: Springer

Published: 2016-10-13

Total Pages: 709

ISBN-13: 3319307053

DOWNLOAD EBOOK

This essential volume comprehensively discusses redox-active therapeutics, focusing particularly on their molecular design, mechanistic, pharmacological and medicinal aspects. The first section of the book describes the basic aspects of the chemistry and biology of redox-active drugs and includes a brief overview of the redox-based pathways involved in cancer and the medical aspects of redox-active drugs, assuming little in the way of prior knowledge. Subsequent sections and chapters describe more specialized aspects of central nervous system injuries, neurodegenerative diseases, pain, radiation injury and radioprotection (such as of brain, lungs, head and neck and erectile function) and neglected diseases (e.g., leishmaniasis). It encompasses several major classes of redox-active experimental therapeutics, which include porphyrins, salens, nitrones, and most notably metal-containing (e.g., Mn, Fe, Cu, Zn, Sb) drugs as either single compounds or formulations with nanomaterials and quantum dots. Numerous illustrations, tables and figures enhance and complement the text; extensive references to relevant literature are also included. Redox-Active Therapeutics is an invaluable addition to Springer’s Oxidative Stress in Applied Basic Research and Clinical Practice series. It is essential reading for researchers, clinicians and graduate students interested in understanding and exploring the Redoxome—the organism redox network—as an emerging frontier in drug design, redox biology and medicine.


The Heterogeneity of Cancer Metabolism

The Heterogeneity of Cancer Metabolism

Author: Anne Le

Publisher: Springer

Published: 2018-06-26

Total Pages: 186

ISBN-13: 331977736X

DOWNLOAD EBOOK

Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.


Redox Regulation of Differentiation and De-differentiation

Redox Regulation of Differentiation and De-differentiation

Author: Carsten Berndt

Publisher: CRC Press

Published: 2021-08-26

Total Pages: 544

ISBN-13: 1000435385

DOWNLOAD EBOOK

Cell differentiation and the development of multicellular organisms are processes of self-assembly, controlled and driven by signaling molecules and cascades including redox regulation. These reactions may have provided the energy for the first metabolic steps in the evolution of life. Today, redox modifications are established as important regulatory events in cellular functions including differentiation and development. Redox modifications of single cysteines regulate differentiation of stem cells, formation of functioning organs, and de-differentiation such as formation of cancer cells. Current cancer therapy is based on redox events as well and regeneration often reactivates developmental pathways. Understanding differentiation and de-differentiation on a molecular level is therefore a prerequisite for the continuing development of new medical therapies. This book summarizes the roles of redox regulation in development by bringing together different concepts and comparing similarities and differences between various cell types and species. An international team of contributors presents several new aspects of redox-regulated differentiation and de-differentiation, including aspects of redox medicine. Key Features Provides the first summary on this important topic Reviews redox-dependent development of model organisms and single organs Highlights the redox-regulated pathways important for differentiation processes Illustrates the potential of redox medicine Combines state-of-the-art knowledge in differentiation/development, aging/longevity, and repair/regeneration Written by leading experts in the field Related Titles Ayyanathan, K., ed. Cancer Cell Signaling: Targeting Signaling Pathways Toward Therapeutic Approaches to Cancer (ISBN 978-1-77188-067-1) Clarke, M. & J. Frampton. Stem Cells: Biology and Application (ISBN 9780-8153-4511-4) Lim, W. & B. Mayer. Cell Signaling: Principles and Mechanisms (ISBN 978-0-8153-4244-1) Wong, E., ed. Autophagy and Signaling (ISBN 978-0-367-65772-7)


Redox Signaling

Redox Signaling

Author:

Publisher: Elsevier

Published: 2024-08-01

Total Pages: 184

ISBN-13: 0443294453

DOWNLOAD EBOOK

Advances in Cancer Research, Volume 162 highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the ACR series Updated release includes the latest information on the Advances in Cancer Research


Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Author: Sajal Chakraborti

Publisher: Springer Nature

Published: 2022-09-28

Total Pages: 4078

ISBN-13: 9811654220

DOWNLOAD EBOOK

This reference book, which is the second volume of Targeting Oxidative Stress in Cancer, explores oxidative stress as the potential therapeutic target for cancer therapy. The initial chapters discuss the molecular mechanisms of oxidative stress and its effects on different signaling pathways. Subsequently, the sections examine the impact of redox signaling on tumor cell proliferation and consider the therapeutic potential of dietary phytochemicals and nutraceuticals in reactive oxygen species (ROS)-induced cancer. In turn, it examines the evidence supporting the use of Vitamin C in cancer management, before presenting various synthetic and natural compounds that have therapeutic implications for oxidative stress-induced cancer. It also explores the correlation between non-coding RNA and oxidative stress. Furthermore, the book summarizes the role of stem cells in ROS-induced cancer therapy and reviews the therapeutic applications of nanoparticles to alter redox haemostasis in cancer cells. Lastly, it explores heat-shock proteins, ubiquitin ligases, and probiotics as potential therapeutic agents in ROS-mediated cancer. This book is a useful resource for basic and translational scientists as well as clinicians interested in the field of oxidative stress and cancer therapy. ​