Seismic Hazard and Risk Analysis

Seismic Hazard and Risk Analysis

Author: Jack Baker

Publisher: Cambridge University Press

Published: 2021-10-21

Total Pages: 600

ISBN-13: 9781108425056

DOWNLOAD EBOOK

Seismic hazard and risk analyses underpin the loadings prescribed by engineering design codes, the decisions by asset owners to retrofit structures, the pricing of insurance policies, and many other activities. This is a comprehensive overview of the principles and procedures behind seismic hazard and risk analysis. It enables readers to understand best practises and future research directions. Early chapters cover the essential elements and concepts of seismic hazard and risk analysis, while later chapters shift focus to more advanced topics. Each chapter includes worked examples and problem sets for which full solutions are provided online. Appendices provide relevant background in probability and statistics. Computer codes are also available online to help replicate specific calculations and demonstrate the implementation of various methods. This is a valuable reference for upper level students and practitioners in civil engineering, and earth scientists interested in engineering seismology.


An Introduction to Probabilistic Seismic Hazard Analysis

An Introduction to Probabilistic Seismic Hazard Analysis

Author: J. Paul Guyer, P.E., R.A.

Publisher: Guyer Partners

Published: 2020-07-22

Total Pages: 39

ISBN-13:

DOWNLOAD EBOOK

Introductory technical guidance for civil, geotechnical and structural engineers interested in earthquake hazard analysis. Here is what is discussed: 1. OVERVIEW OF PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA) METHODOLOGY 2. CHARACTERIZING SEISMIC SOURCES FOR PSHA 3. GROUND MOTION ATTENUATION CHARACTERIZATION FOR PSHA 4. TREATMENT OF SCIENTIFIC UNCERTAINTY IN PSHA 5. DEVELOPMENT OF SITE-SPECIFIC RESPONSE SPECTRA FROM PSHA 6. DEVELOPMENT OF ACCELEROGRAMS 7. SUMMARY OF STRENGTHS AND LIMITATIONS OF DSHA AND PSHA.


Seismic Risk Analysis of Nuclear Power Plants

Seismic Risk Analysis of Nuclear Power Plants

Author: Wei-Chau Xie

Publisher: Cambridge University Press

Published: 2019-04-18

Total Pages: 631

ISBN-13: 1108752608

DOWNLOAD EBOOK

Seismic Risk Analysis of Nuclear Power Plants addresses the needs of graduate students in engineering, practicing engineers in industry, and regulators in government agencies, presenting the entire process of seismic risk analysis in a clear, logical, and concise manner. It offers a systematic and comprehensive introduction to seismic risk analysis of critical engineering structures focusing on nuclear power plants, with a balance between theory and applications, and includes the latest advances in research. It is suitable as a graduate-level textbook, for self-study, or as a reference book. Various aspects of seismic risk analysis - from seismic hazard, demand, and fragility analyses to seismic risk quantification, are discussed, with detailed step-by-step analysis of specific engineering examples. It presents a wide range of topics essential for understanding and performing seismic risk analysis, including engineering seismology, probability theory and random processes, digital signal processing, structural dynamics, random vibration, and engineering risk and reliability.


Earthquake Hazard in Lebanon

Earthquake Hazard in Lebanon

Author: Amr S. Elnashai

Publisher: World Scientific

Published: 2004

Total Pages: 181

ISBN-13: 1860944612

DOWNLOAD EBOOK

This book presents a comprehensive treatment of earthquake hazards in Lebanon and its vicinity. A thorough review of the tectonics of the region is given alongside a re-assessment of the historical and instrumental earthquake records. Probabilistic seismic hazard analysis is undertaken and hazard maps are presented in terms of peak ground parameters as well as spectral ordinates (acceleration and displacement). Owing to their significance to the economy of Lebanon, the three cities of Beirut, Sidon and Tripoli are subjected to site-specific earthquake hazard assessment. The maps provided are the best available estimates of seismic hazards in Lebanon and are recommended for use in risk assessment. Also, the basis and framework for similar studies in the Levant are given. The rigorous and pragmatic approach adopted by the authors renders the book accessible to design engineers and researchers alike.


Rapid Visual Screening of Buildings for Potential Seismic Hazards: Supporting Documentation

Rapid Visual Screening of Buildings for Potential Seismic Hazards: Supporting Documentation

Author:

Publisher: Government Printing Office

Published: 2015

Total Pages: 206

ISBN-13: 9780160926754

DOWNLOAD EBOOK

The Rapid Visual Screening (RVS) handbook can be used by trained personnel to identify, inventory, and screen buildings that are potentially seismically vulnerable. The RVS procedure comprises a method and several forms that help users to quickly identify, inventory, and score buildings according to their risk of collapse if hit by major earthquakes. The RVS handbook describes how to identify the structural type and key weakness characteristics, how to complete the screening forms, and how to manage a successful RVS program.


Safety of Dams

Safety of Dams

Author: National Research Council

Publisher: National Academies Press

Published: 1985-02-01

Total Pages: 295

ISBN-13: 0309035325

DOWNLOAD EBOOK

From earth tectonics and meteorology to risk, responsibility, and the role of government, this comprehensive and detailed book reviews current practices in designing dams to withstand extreme hydrologic and seismic events. Recommendations for action and for further research to improve dam safety evaluations are presented.


Improved Seismic Monitoring - Improved Decision-Making

Improved Seismic Monitoring - Improved Decision-Making

Author: National Research Council

Publisher: National Academies Press

Published: 2006-01-04

Total Pages: 196

ISBN-13: 0309165032

DOWNLOAD EBOOK

Improved Seismic Monitoringâ€"Improved Decision-Making, describes and assesses the varied economic benefits potentially derived from modernizing and expanding seismic monitoring activities in the United States. These benefits include more effective loss avoidance regulations and strategies, improved understanding of earthquake processes, better engineering design, more effective hazard mitigation strategies, and improved emergency response and recovery. The economic principles that must be applied to determine potential benefits are reviewed and the report concludes that although there is insufficient information available at present to fully quantify all the potential benefits, the annual dollar costs for improved seismic monitoring are in the tens of millions and the potential annual dollar benefits are in the hundreds of millions.