This book is a compilation of research papers and presentations from the Fourth Annual International Conference on Data Science, Machine Learning and Blockchain Technology (AICDMB 2023, Mysuru, India, 16-17 March 2023). The book covers a wide range of topics, including data mining, natural language processing, deep learning, computer vision, big data analytics, cryptography, smart contracts, decentralized applications, and blockchain-based solutions for various industries such as healthcare, finance, and supply chain management. The research papers presented in this book highlight the latest advancements and practical applications in data science, machine learning, and blockchain technology, and provide insights into the future direction of these fields. The book serves as a valuable resource for researchers, students, and professionals in the areas of data science, machine learning, and blockchain technology.
The field of computational intelligence has grown tremendously over that past five years, thanks to evolving soft computing and artificial intelligent methodologies, tools and techniques for envisaging the essence of intelligence embedded in real life observations. Consequently, scientists have been able to explain and understand real life processes and practices which previously often remain unexplored by virtue of their underlying imprecision, uncertainties and redundancies, and the unavailability of appropriate methods for describing the incompleteness and vagueness of information represented. With the advent of the field of computational intelligence, researchers are now able to explore and unearth the intelligence, otherwise insurmountable, embedded in the systems under consideration. Computational Intelligence is now not limited to only specific computational fields, it has made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design to name a few. Recent Trends in Computational Intelligence Enabled Research: Theoretical Foundations and Applications explores the use of this computational paradigm across a wide range of applied domains which handle meaningful information. Chapters investigate a broad spectrum of the applications of computational intelligence across different platforms and disciplines, expanding our knowledge base of various research initiatives in this direction. This volume aims to bring together researchers, engineers, developers and practitioners from academia and industry working in all major areas and interdisciplinary areas of computational intelligence, communication systems, computer networks, and soft computing. - Provides insights into the theory, algorithms, implementation, and application of computational intelligence techniques - Covers a wide range of applications of deep learning across various domains which are researching the applications of computational intelligence - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques
In a world where computer science is now an essential element in all of our lives, a new opportunity to disseminate the latest research and trends is always welcome. This book presents the proceedings of the first International Conference on Recent Trends in Computing (ICRTC 2021), which was held as a virtual event on 21 – 22 May 2021 at Sanjivani College of Engineering, Kopargaon, India due to the restrictions of the COVID-19 pandemic. This online conference, aimed at facilitating academic exchange among researchers, enabled experts and scholars around from around the globe to gather for the discussion of the latest advanced research in the field despite the extensive travel restrictions still in place. The book contains 134 papers selected from 329 submitted papers after a rigorous peer-review process, and topics covered include advanced computing, networking, informatics, security and privacy, and other related fields. The book will be of interest to all those eager to find the latest trends and most recent developments in computer science.
Computational science and engineering (CSE) is a broad multidisciplinary and integrative area including a variety of applications in science, engineering, numerical methods, applied mathematics, and computer science disciplines. The book covers a collection of different types of applications and visions to various disciplinary key aspects, which comprises both problem-driven and methodology-driven approaches at the same time. These selected applications are: Computational and information technologies for numerical models and large unstructured data processing Evolution of matrix computations and new concepts in computing Inverse problems covering both classical and newer approaches Integro-differential scheme (IDS) that combines finite volume and finite difference methods Smart city wireless networks Signal processing methods
Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology discusses the latest developments in all aspects of computational biology, bioinformatics, and systems biology and the application of data-analytics and algorithms, mathematical modeling, and simu- lation techniques. • Discusses the development and application of data-analytical and theoretical methods, mathematical modeling, and computational simulation techniques to the study of biological and behavioral systems, including applications in cancer research, computational intelligence and drug design, high-performance computing, and biology, as well as cloud and grid computing for the storage and access of big data sets. • Presents a systematic approach for storing, retrieving, organizing, and analyzing biological data using software tools with applications to general principles of DNA/RNA structure, bioinformatics and applications, genomes, protein structure, and modeling and classification, as well as microarray analysis. • Provides a systems biology perspective, including general guidelines and techniques for obtaining, integrating, and analyzing complex data sets from multiple experimental sources using computational tools and software. Topics covered include phenomics, genomics, epigenomics/epigenetics, metabolomics, cell cycle and checkpoint control, and systems biology and vaccination research. • Explains how to effectively harness the power of Big Data tools when data sets are so large and complex that it is difficult to process them using conventional database management systems or traditional data processing applications. - Discusses the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological and behavioral systems. - Presents a systematic approach for storing, retrieving, organizing and analyzing biological data using software tools with applications. - Provides a systems biology perspective including general guidelines and techniques for obtaining, integrating and analyzing complex data sets from multiple experimental sources using computational tools and software.
This book constitutes an up-to-date account of principles, methods, and tools for mathematical and statistical modelling in a wide range of research fields, including medicine, health sciences, biology, environmental science, engineering, physics, chemistry, computation, finance, economics, and social sciences. It presents original solutions to real-world problems, emphasizes the coordinated development of theories and applications, and promotes interdisciplinary collaboration among mathematicians, statisticians, and researchers in other disciplines. Based on a highly successful meeting, the International Conference on Applied Mathematics, Modeling and Computational Science, AMMCS 2019, held from August 18 to 23, 2019, on the main campus of Wilfrid Laurier University, Waterloo, Canada, the contributions are the results of submissions from the conference participants. They provide readers with a broader view of the methods, ideas and tools used in mathematical, statistical and computational sciences.
The last decade has witnessed various technological advances in life sciences, especially high throughput technologies. These technologies provide a way to perform parallel scientific studies in a very short period of time with low cost. High throughput techniques, mainly, next generation sequencing, microarray and mass spectrometry, have strengthened the omics vision in the last decades (study of complete system) and now resulted in well-developed branches of omics i.e., genomics, transcriptomics, proteomics and metabolomics, which deal with almost every level of central dogma of life. Practice of high throughput techniques throughout the world with different aims and objectives resulted in a voluminous data, which required computational applications, i.e., database, algorithm and software to store, process and get biological interpretation from primary raw data. Researchers from different fields are looking to analyze these raw data for different purposes, but lacking of proper information and knowledge in proper documented form creates different kinds of hurdles and raises the challenges. This book contains thirteen chapters that deal with different computational biology/bioinformatics resources and concepts which are already in practice by the scientific community or can be utilized to handle various aspects of different classes of omics data. It includes different computational concepts, algorithm, resources and recent trends belonging to the four major branches of omics (i.e., genomics, transcriptomics, proteomics and metabolomics), including integrative omics. It will help all scholars who are working in any branch of computational omics and bioinformatics field as well as those who would like to perform research at a systemic biology through computational approaches.
Computational finance is an interdisciplinary field which joins financial mathematics, stochastics, numerics and scientific computing. Its task is to estimate as accurately and efficiently as possible the risks that financial instruments generate. This volume consists of a series of cutting-edge surveys of recent developments in the field written by leading international experts. These make the subject accessible to a wide readership in academia and financial businesses. The book consists of 13 chapters divided into 3 parts: foundations, algorithms and applications. Besides surveys of existing results, the book contains many new previously unpublished results.
This volume is an excellent resource for professionals in various areas of applications of mathematics, modeling, and computational science. It focuses on recent progress and modern challenges in these areas. The volume provides a balance between fundamental theoretical and applied developments, emphasizing the interdisciplinary nature of modern trends and detailing state-of-the-art achievements in Applied Mathematics, Modeling, and Computational Science. The chapters have been authored by international experts in their respective fields, making this book ideal for researchers in academia, practitioners, and graduate students. It can also serve as a reference in the diverse selected areas of applied mathematics, modelling, and computational sciences, and is ideal for interdisciplinary collaborations.
This book consists of 20 chapters in which the authors deal with different theoretical and practical aspects of new trends in Collective Computational Intelligence techniques. Computational Collective Intelligence methods and algorithms are one the current trending research topics from areas related to Artificial Intelligence, Soft Computing or Data Mining among others. Computational Collective Intelligence is a rapidly growing field that is most often understood as an AI sub-field dealing with soft computing methods which enable making group decisions and processing knowledge among autonomous units acting in distributed environments. Web-based Systems, Social Networks, and Multi-Agent Systems very often need these tools for working out consistent knowledge states, resolving conflicts and making decisions. The chapters included in this volume cover a selection of topics and new trends in several domains related to Collective Computational Intelligence: Language and Knowledge Processing, Data Mining Methods and Applications, Computer Vision, and Intelligent Computational Methods. This book will be useful for graduate and PhD students in computer science as well as for mature academics, researchers and practitioners interested in the methods and applications of collective computational intelligence in order to create new intelligent systems.