This is an account of the proceedings of a very successful symposium of Transcendental Number Theory held in Durham in 1986. Most of the leading international specialists were present and the lectures reflected the great advances that have taken place in this area. The papers cover all the main branches of the subject, and include not only definitive research but valuable survey articles.
The articles in this volume are an outgrowth of an International Confer ence in Intersection Theory that took place in Bologna, Italy (December 1997). In a somewhat unorthodox format aimed at both the mathematical community as well as summer school students, talks were research-oriented as well as partly expository. There were four series of expository talks by the following people: M. Brion, University of Grenoble, on Equivariant Chow groups and applications; H. Flenner, University of Bochum, on Joins and intersections; E.M. Friedlander, Northwestern University, on Intersection products for spaces of algebraic cycles; R. Laterveer, University of Strasbourg, on Bigraded Chow (co)homology. Four introductory papers cover the following topics and bring the reader to the forefront of research: 1) the excess intersection algorithm of Stuckrad and Vogel, combined with the deformation to the normal cone, together with many of its geo metric applications; 2) new and very important homotopy theory techniques that are now used in intersection theory; 3) the Bloch-Beilinson filtration and the theory of motives; 4) algebraic stacks, the modern language of moduli theory. Other research articles concern such active fields as stable maps and Gromov-Witten invariants, deformation theory of complex varieties, and others. Organizers of the conference were Rudiger Achilles, Mirella Manaresi, and Angelo Vistoli, all from the University of Bologna; the scientific com mittee consisted of Geir Ellingsrud, University of Oslo, William Fulton, University of Michigan at Ann Arbor, and Angelo Vistoli. The conference was financed by the European Union (contract no.
Contains a collection of papers devoted primarily to transcendental number theory and diophantine approximations. This title includes a text of the author's invited address on his work on the theory of transcendental numbers to the 1978 International Congress of Mathematicians in Helsinki.
This book is a survey of the most important directions of research in transcendental number theory. For readers with no specific background in transcendental number theory, the book provides both an overview of the basic concepts and techniques and also a guide to the most important results and references.
Number theory has a wealth of long-standing problems, the study of which over the years has led to major developments in many areas of mathematics. This volume consists of seven significant chapters on number theory and related topics. Written by distinguished mathematicians, key topics focus on multipartitions, congruences and identities (G. Andrews), the formulas of Koshliakov and Guinand in Ramanujan's Lost Notebook (B. C. Berndt, Y. Lee, and J. Sohn), alternating sign matrices and the Weyl character formulas (D. M. Bressoud), theta functions in complex analysis (H. M. Farkas), representation functions in additive number theory (M. B. Nathanson), and mock theta functions, ranks, and Maass forms (K. Ono), and elliptic functions (M. Waldschmidt).
This is the third Lecture Notes volume to be produced in the framework of the New York Number Theory Seminar. The papers contained here are mainly research papers. N
The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. Two chapters provide complete and simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.
First published in 1975, this classic book gives a systematic account of transcendental number theory, that is, the theory of those numbers that cannot be expressed as the roots of algebraic equations having rational coefficients. Their study has developed into a fertile and extensive theory, which continues to see rapid progress today. Expositions are presented of theories relating to linear forms in the logarithms of algebraic numbers, of Schmidt's generalization of the Thue–Siegel–Roth theorem, of Shidlovsky's work on Siegel's E-functions and of Sprindžuk's solution to the Mahler conjecture. This edition includes an introduction written by David Masser describing Baker's achievement, surveying the content of each chapter and explaining the main argument of Baker's method in broad strokes. A new afterword lists recent developments related to Baker's work.