Today, tropical cyclones continue to bring destruction, as well as disruption, to societies that are exposed to their threat. This book represents a compilation of recent cutting-edge research on tropical cyclones and their impacts from researchers at many institutions around the world. This book contains new looks at tropical cyclone dynamics, the use of satellite-based remote sensing in the detection and climatology of tropical cyclones, and the modeling and prediction of tropical cyclones as well as their associated impacts. This book would make a nice addition to any course on tropical meteorology highlighting topics of interest in recent research on this topic.
Today, tropical cyclones continue to bring destruction, as well as disruption, to societies that are exposed to their threat. This book represents a compilation of recent cutting-edge research on tropical cyclones and their impacts from researchers at many institutions around the world. This book contains new looks at tropical cyclone dynamics, the use of satellite-based remote sensing in the detection and climatology of tropical cyclones, and the modeling and prediction of tropical cyclones as well as their associated impacts. This book would make a nice addition to any course on tropical meteorology highlighting topics of interest in recent research on this topic.
This book highlights some of the most recent research in the climatological behavior of tropical cyclones as well as the dynamics, predictability, and character of these storms as derived using remote sensing techniques. Also included in this book is a review of the interaction between tropical cyclones and coastal ocean dynamics in the Northwest Pacific and an evaluation of the performance of CMIP6 models in replicating the current climate using accumulated cyclone energy. The latter demonstrates how the climate may change in the future. This book can be a useful resource for those studying the character of these storms, especially those with the goal of anticipating their future occurrence in both the short and climatological range and their associated hazards.
Technology has propelled the atmospheric sciences from a fledgling discipline to a global enterprise. Findings in this field shape a broad spectrum of decisions--what to wear outdoors, whether aircraft should fly, how to deal with the issue of climate change, and more. This book presents a comprehensive assessment of the atmospheric sciences and offers a vision for the future and a range of recommendations for federal authorities, the scientific community, and education administrators. How does atmospheric science contribute to national well-being? In the context of this question, the panel identifies imperatives in scientific observation, recommends directions for modeling and forecasting research, and examines management issues, including the growing problem of weather data availability. Five subdisciplines--physics, chemistry, dynamics and weather forecasting, upper atmosphere and near-earth space physics, climate and climate change--and their status as the science enters the twenty-first century are examined in detail, including recommendations for research. This readable book will be of interest to public-sector policy framers and private-sector decisionmakers as well as researchers, educators, and students in the atmospheric sciences.
Atmospheric Remote Sensing: Principles and Applications discusses the fundamental principles of atmospheric remote sensing and their applications in different research domains. Furthermore, the book covers the basic concepts of satellite remote sensing of the atmosphere, followed by Ionospheric remote sensing tools like Global Positioning System (GPS) and Very Low Frequency (VLF) wave. Sections emphasize the applications of atmospheric remote study in Ionospheric perturbation, fire detection, aerosol characteristics over land, ocean and Himalayan regions. In addition, the application of atmospheric remote sensing in disaster management like dust storms, cyclones, smoke plume, aerosol-cloud interaction, and their impact on climate change are discussed. This book is a valuable reference for students, researchers and professionals working in atmospheric science, remote sensing, and related disciplines. - Covers the fundamentals of remote sensing as applied to atmospheric science - Includes methods and applications of remote sensing technologies for atmospheric science and related disciplines in earth science - Includes full color photographs and figures that visually represent concepts discussed in the book
This new edition introduces the fundamentals of passive microwave remote sensing of oceans, including the physical principles of microwave radiometry, novel observational data, their interpretation, and applications. It not only demonstrates and examines the recent advantages and state of the art of microwave data but also provides guidance for explaining complex ocean studies and advanced applications. All chapters are thoroughly updated with detailed analysis of space‐based microwave missions, and a new chapter on space‐based microwave radiometer experiments has been added. This book discusses the power of microwave remote sensing as an efficient tool for diagnostics of ocean phenomena in research and education. Features New to this Edition: • Includes a new chapter and additional data, images, illustrations, and references. • Uses ocean microwave data, acquired from different platforms, to illustrate different methods of analysis and interpretation. • Updates information on recent and important satellite missions dedicated to microwave remote sensing of oceans. • Offers more detailed analysis of multiband microwave data and images. • Provides examples of microwave data that cover different ocean environmental phenomena and hydro‐physical fields, including global and local ocean features. • Presents additional material on advanced applications, including detection capabilities. This book is intended for postgraduate students and professionals working in fields related to remote sensing, geography, oceanography, civil, environmental, and geotechnical engineering.
This book is a completely rewritten, updated and expanded new edition of the original Global Perspectives on Tropical Cyclones published in 1995. It presents a comprehensive review of the state of science and forecasting of tropical cyclones together with the application of this science to disaster mitigation, hence the tag: From Science to Mitigation.Since the previous volume, enormous progress in understanding tropical cyclones has been achieved. These advances range from the theoretical through to ever more sophisticated computer modeling, all underpinned by a vast and growing range of observations from airborne, space and ocean observation platforms. The growth in observational capability is reflected by the inclusion of three new chapters on this topic. The chapter on the effects of climate change on tropical cyclone activity is also new, and appropriate given the recent intense debate on this issue. The advances in the understanding of tropical cyclones which have led to significant improvements in forecasting track, intensity, rainfall and storm surge, are reviewed in detail over three chapters. For the first time, a chapter on seasonal prediction is included. The book concludes with an important chapter on disaster mitigation, which is timely given the enormous loss of life in recent tropical cyclone disasters.World Scientific Series on Asia-Pacific Weather and Climate is indexed in SCOPUS.
"In Hot Talk, Cold Science, Fred Singer looks at the issue of climate change the way a physicist should. He asks probing questions and offers reasoned possibilities. He notes the obvious weaknesses that others too often ignore.... Fortunately, some like Dr. Singer still prefer the joys and value of scientific inquiry." —Richard S. Lindzen, Alfred P. Sloan Professor Emeritus of Meteorology, M.I.T. The revised and expanded third edition of Hot Talk, Cold Science forms the capstone of the distinguished astrophysicist Dr. S. Fred Singer's lucid, yet hard scientific look at climate change. And the book is no less explosive than its predecessors—and certainly never more timely. Singer explores the inaccuracies in historical climate data and the failures of climate models, as well as the impact of solar variability, clouds, ocean currents, and sea levels on global climate—plus factors that could mitigate any human impact on world climate. Singer's masterful analysis decisively shows that the pessimistic, and often alarming, global-warming scenarios depicted in the media have no scientific basis. In fact, he finds that many aspects of increased levels of CO2, as well as any modest warming, such as a longer growing seasons for food and a reduced need to use fossil fuels for heating, would have a highly positive impact on the human race. As alarmists clamor to impose draconian government restrictions on entire populations in order to combat "climate change," this book reveals some other startling, stubborn contradictory facts, including: CO2 has not caused temperatures or sea levels to rise beyond historical rates. Severe storms have not increased in frequency or intensity since 1970—neither have heat waves nor droughts. Global "climate change" is not harming coral reefs. Any increases in CO2 concentrations across huge time spans haven't preceded rising global temperatures, they've followed them by about 600 to 800 years—just the opposite of alarmist claims. "Carbon" taxes and other "solutions" to the global warming "crisis" would have severe consequences for economically disadvantaged groups and nations. Alarmist climate scientists have hidden their raw temperature data and deleted emails—then undermined the peer-review system to squelch debate. In sum, despite all the hot talk—and outright duplicity—there is no "climate crisis" resulting from human activities and no such threat on the horizon. With the assistance of renowned climate scientists David R. Legates and Anthony R. Lupo, Singer's Hot Talk, Cold Science is an essential, clear-headed book of scope and substance that no one who claims to value science, the environment, and human well-being can afford to ignore.
How can atmospheric variables such as temperature, wind, rain and ozone be measured by satellites? How are these measurements taken and what has been learned since the first measurements in the 1970s? What data are currently available and what data are expected in the future? The second volume of this encyclopedic book presents each field of application – meteorology, atmospheric composition and climate – with its main aims as well as the specific areas which can be addressed through the use of satellite remote sensing. This book presents the satellite products used for operational purposes as well as those that allow for the advancement of scientific knowledge. The instruments that are at their origin are described, as well as the processing, delivery times and the knowledge they provide. This book is completed by a glossary and appendices with a list of supporting instruments already in use.
Comprehensive and up-to-date information on Earth’s most dominant year-to-year climate variation The El Niño Southern Oscillation (ENSO) in the Pacific Ocean has major worldwide social and economic consequences through its global scale effects on atmospheric and oceanic circulation, marine and terrestrial ecosystems, and other natural systems. Ongoing climate change is projected to significantly alter ENSO's dynamics and impacts. El Niño Southern Oscillation in a Changing Climate presents the latest theories, models, and observations, and explores the challenges of forecasting ENSO as the climate continues to change. Volume highlights include: Historical background on ENSO and its societal consequences Review of key El Niño (ENSO warm phase) and La Niña (ENSO cold phase) characteristics Mathematical description of the underlying physical processes that generate ENSO variations Conceptual framework for understanding ENSO changes on decadal and longer time scales, including the response to greenhouse gas forcing ENSO impacts on extreme ocean, weather, and climate events, including tropical cyclones, and how ENSO affects fisheries and the global carbon cycle Advances in modeling, paleo-reconstructions, and operational climate forecasting Future projections of ENSO and its impacts Factors influencing ENSO events, such as inter-basin climate interactions and volcanic eruptions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors.