This volume contains selected expository lectures delivered at the Maurice Auslander Distinguished Lectures and International Conference, held May 1–6, 2014, at the Woods Hole Oceanographic Institute, Woods Hole, MA. Several significant developments of the last decade in representation theory of finite-dimensional algebras are related to combinatorics. Three of the five lectures in this volume deal, respectively, with the Catalan combinatorics, the combinatorics of Gelfand-Zetlin polytopes, and the combinatorics of tilting modules. The remaining papers present history and recent advances in the study of left orders in left Artinian rings and a survey on invariant theory of Artin-Schelter regular algebras.
This reprint of a 1983 Yale graduate course makes results in modular representation theory accessible to an audience ranging from second-year graduate students to established mathematicians. Following a review of background material, the lectures examine three closely connected topics in modular representation theory of finite groups: representations rings; almost split sequences and the Auslander-Reiten quiver; and complexity and cohomology varieties, which has become a major theme in representation theory.
From April 2009 until March 2016, the German Science Foundation generously supported the Priority Program SPP 1388 in Representation Theory. The core principles of the projects realized in the framework of the priority program have been categorification and geometrization, which are also reflected in the contributions to this volume. Apart from the articles by former postdocs supported by the priority program, the volume contains a number of invited research and survey articles. This volume covers current research topics from the representation theory of finite groups, of algebraic groups, of Lie superalgebras, of finite dimensional algebras, and of infinite dimensional Lie groups. Graduate students and researchers in mathematics interested in representation theory will find this volume inspiring. It contains many stimulating contributions to the development of this broad and extremely diverse subject.
Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and string theory, and the introduction of cluster algebra and categorification techniques into a broad range of areas. Chapters will also cover novel applications of representation theory to random matrix theory, exactly solvable models in statistical mechanics, and integrable hierarchies. The recent progress in the mathematical and physicals aspects of deformation quantization and tensor categories is also addressed. Representation Theory, Mathematical Physics, and Integrable Systems will be of interest to a wide audience of mathematicians interested in these areas and the connections between them, ranging from graduate students to junior, mid-career, and senior researchers.
This book contains the proceedings of the 2009-2011 Southeastern Lie Theory Workshop Series, held October 9-11, 2009 at North Carolina State University, May 22-24, 2010, at the University of Georgia, and June 1-4, 2011 at the University of Virginia. Some of the articles, written by experts in the field, survey recent developments while others include new results in Lie algebras, quantum groups, finite groups, and algebraic groups.
This volume contains the proceedings of two AMS Special Sessions "Geometric and Algebraic Aspects of Representation Theory" and "Quantum Groups and Noncommutative Algebraic Geometry" held October 13–14, 2012, at Tulane University, New Orleans, Louisiana. Included in this volume are original research and some survey articles on various aspects of representations of algebras including Kac—Moody algebras, Lie superalgebras, quantum groups, toroidal algebras, Leibniz algebras and their connections with other areas of mathematics and mathematical physics.
This book is concerned with recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, quantum groups, homological algebra, invariant theory, combinatorics, model theory and theoretical physics. The collection of articles, written by leading researchers in the field, is conceived as a sort of handbook providing easy access to the present state of knowledge and stimulating further development. The topics under discussion include diagram algebras, Brauer algebras, cellular algebras, quasi-hereditary algebras, Hall algebras, Hecke algebras, symplectic reflection algebras, Cherednik algebras, Kashiwara crystals, Fock spaces, preprojective algebras, cluster algebras, rank varieties, varieties of algebras and modules, moduli of representations of quivers, semi-invariants of quivers, Cohen-Macaulay modules, singularities, coherent sheaves, derived categories, spectral representation theory, Coxeter polynomials, Auslander-Reiten theory, Calabi-Yau triangulated categories, Poincare duality spaces, selfinjective algebras, periodic algebras, stable module categories, Hochschild cohomologies, deformations of algebras, Galois coverings of algebras, tilting theory, algebras of small homological dimensions, representation types of algebras, and model theory. This book consists of fifteen self-contained expository survey articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. They contain a large number of open problems and give new perspectives for research in the field.
This book is based on lectures given during a Workshop on Representations of Algebras and Related Topics. Some additional articles are included in order to complete a panoramic view of the main trends of the subject. The volume contains original presentations by leading algebraists addressed to specialists as well as to a broader mathematical audience. The articles include new proofs, examples, and detailed arguments. Topics under discussion include moduli spaces associated to quivers, canonical basis of quantum algebras, categorifications and derived categories, $A$-infinity algebras and functor categories, cluster algebras, support varieties for modules and complexes, the Gabriel-Roiter measure for modules, and selfinjective algebras.
From March 20 through April 5, 1973, the Mathematics Department of Tulane University organized a seminar on recent progress made in the general theory of the representation of rings and topological algebras by continuous sections in sheaves and bundles. The seminar was divided into two main sections: one concerned with sheaf representation, the other with bundle representation. The first was concerned with ringed spaces, applications to logic, universal algebra and lattice theory. The second was almost exclusively devoted to C*-algebra and Hilbert space bundles or closely related material. This collection represents the majority of the papers presented by seminar participants, with the addition of three papers which were presented by title.
Expanding upon the material delivered during the LMS Autumn Algebra School 2020, this volume reflects the fruitful connections between different aspects of representation theory. Each survey article addresses a specific subject from a modern angle, beginning with an exploration of the representation theory of associative algebras, followed by the coverage of important developments in Lie theory in the past two decades, before the final sections introduce the reader to three strikingly different aspects of group theory. Written at a level suitable for graduate students and researchers in related fields, this book provides pure mathematicians with a springboard into the vast and growing literature in each area.