This volume is a collection of articles discussing the most recent advances on various topics in partial differential equations. Many important issues regarding evolution problems, their asymptotic behavior and their qualitative properties are addressed. The quality and completeness of the articles will make this book a source of inspiration and references in the future.
This volume is a collection of articles discussing the most recent advances on various topics in partial differential equations. Many important issues regarding evolution problems, their asymptotic behavior and their qualitative properties are addressed. The quality and completeness of the articles will make this book a source of inspiration and references in the future. Contents: Steady Free Convection in a Bounded and Saturated Porous Medium (S Akesbi et al.); Quasilinear Parabolic Functional Evolution Equations (H Amann); A Linear Parabolic Problem with Non-Dissipative Dynamical Boundary Conditions (C Bandle & W Reichel); Remarks on Some Class of Nonlocal Elliptic Problems (M Chipot); On Some Definitions and Properties of Generalized Convex Sets Arising in the Calculus of Variations (B Dacorogna et al.); Note on the Asymptotic Behavior of Solutions to an Anisotropic Crystalline Curvature Flow (C Hirota et al.); A Reaction-Diffusion Approximation to a Cross-Diffusion System (M Iida et al.); Bifurcation Diagrams to an Elliptic Equation Involving the Critical Sobolev Exponent with the Robin Condition (Y Kabeya); Ginzburg-Landau Functional in a Thin Loop and Local Minimizers (S Kosugi & Y Morita); Singular Limit for Some Reaction Diffusion System (K Nakashima); Rayleigh-B(r)nard Convection in a Rectangular Domain (T Ogawa & T Okuda); Some Convergence Results for Elliptic Problems with Periodic Data (Y Xie); On Global Unbounded Solutions for a Semilinear Parabolic Equation (E Yanagida). Readership: Graduate students and researchers in partial differential equations and nonlinear science.
This work introduces readers to the topic of maximal regularity for difference equations. The authors systematically present the method of maximal regularity, outlining basic linear difference equations along with relevant results. They address recent advances in the field, as well as basic semi group and cosine operator theories in the discrete setting. The authors also identify some open problems that readers may wish to take up for further research. This book is intended for graduate students and researchers in the area of difference equations, particularly those with advance knowledge of and interest in functional analysis.
Much progress has been made in recent years on the issue of asymptotic behavior of problems set in cylinders. This book goes one step further by presenting the latest accomplishments on asymptotic behavior in domains which become unbounded.It also investigates new issues which have emerged including existence and uniqueness of solution in unbounded domains, anisotropic singular perturbations, periodic behavior forced by periodic data. These new advances are treated with original techniques developed to investigate the asymptotic behavior of various problems.Theories investigated throughout the book can be applied to other problems related to partial differential equations, making it an important text for students and researchers within the discipline.Asymptotic Issues for Some Partial Differential Equations is an updated account of ℓ Goes to Plus Infinity, published by Birkhäuser in 2002.
This book is developed for the study of vectorial problems in the calculus of variations. The subject is a very active one and almost half of the book consists of new material. This is a new edition of the earlier book published in 1989 and it is suitable for graduate students. The book has been updated with some new material and examples added. Applications are included.
Inequalities continue to play an essential role in mathematics. Perhaps, they form the last field comprehended and used by mathematicians in all areas of the discipline. Since the seminal work Inequalities (1934) by Hardy, Littlewood and Pólya, mathematicians have laboured to extend and sharpen their classical inequalities. New inequalities are discovered every year, some for their intrinsic interest whilst others flow from results obtained in various branches of mathematics. The study of inequalities reflects the many and various aspects of mathematics. On one hand, there is the systematic search for the basic principles and the study of inequalities for their own sake. On the other hand, the subject is the source of ingenious ideas and methods that give rise to seemingly elementary but nevertheless serious and challenging problems. There are numerous applications in a wide variety of fields, from mathematical physics to biology and economics. This volume contains the contributions of the participants of the Conference on Inequalities and Applications held in Noszvaj (Hungary) in September 2007. It is conceived in the spirit of the preceding volumes of the General Inequalities meetings held in Oberwolfach from 1976 to 1995 in the sense that it not only contains the latest results presented by the participants, but it is also a useful reference book for both lecturers and research workers. The contributions reflect the ramification of general inequalities into many areas of mathematics and also present a synthesis of results in both theory and practice.
Gunter Lumer was an outstanding mathematician whose works have great influence on the research community in mathematical analysis and evolution equations. He was at the origin of the breath-taking development the theory of semigroups saw after the pioneering book of Hille and Phillips from 1957. This volume contains invited contributions presenting the state of the art of these topics and reflecting the broad interests of Gunter Lumer.
This volume is the proceedings of the 14th MSJ International Research Institute "Asymptotic Analysis and Singularity", which was held at Sendai, Japan in July 2005. The proceedings contain survey papers and original research papers on nonlinear partial differential equations, dynamical systems, calculus of variations and mathematical physics.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets except North America
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.