TRB's second Strategic Highway Research Program (SHRP 2) Report S2-C46-RR-1: Activity-Based Travel Demand Models: A Primer explores ways to inform policymakers' decisions about developing and using activity-based travel demand models to better understand how people plan and schedule their daily travel. The document is composed of two parts. The first part provides an overview of activity-based model development and application. The second part discusses issues in linking activity-based models to dynamic network assignment models.
Each chapter in Equilibrium and Advanced Transportation Modelling develops a topic from basic concepts to the state-of-the-art, and beyond. All chapters relate to aspects of network equilibrium. Chapter One advocates the use of simulation models for the representation of traffic flow movements at the microscopic level. Chapter Two presents travel demand systems for generating trip matrices from activity-based models, taking into account the entire daily schedule of network users. Chapter Three examines equilibrium strategic choices adopted by the passengers of a congested transit system, carefully addressing line selection at boarding and transfer nodes. Chapter Four provides a critical appraisal of the traditional process that consists in sequentially performing the tasks of trip generation, trip distribution, mode split and assignment, and its impact on the practice of transportation planning. Chapter Five gives an insightful overview of stochastic assignment models, both in the static and dynamic cases. Chapters Six and Seven investigate the setting of tolls to improve traffic flow conditions in a congested transportation network. Chapter Eight provides a unifying framework for the analysis of multicriteria assignment models. In this chapter, available algorithms are summarized and an econometric perspective on the estimation of heterogeneous preferences is given. Chapter Nine surveys the use of hyperpaths in operations research and proposes a new paradigm of equilibrium in a capacitated network, with an application to transit assignment. Chapter Ten analyzes the transient states of a system moving towards equilibrium, using the mathematical framework of projected dynamical systems. Chapter Eleven discusses an in-depth survey of algorithms for solving shortest path problems, which are pervasive to any equilibrium algorithm. The chapter devotes special attention to the computation of dynamic shortest paths and to shortest hyperpaths. The final chapter considers operations research tools for reducing traffic congestion, in particular introducing an algorithm for solving a signal-setting problem formulated as a bilevel program.
TRB’s National Cooperative Highway Research Program (NCHRP) Report 716: Travel Demand Forecasting: Parameters and Techniques provides guidelines on travel demand forecasting procedures and their application for helping to solve common transportation problems.
National and European transport models have become increasingly important. This volume presents the state of the art and prospects of a sample of the most advanced national and European transport models within a comparative framework.
Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The methods of discrete choice analysis and their applications in the modelling of transportation systems constitute a comparatively new field that has largely evolved over the past 15 years. Since its inception, however, the field has developed rapidly, and this is the first text and reference work to cover the material systematically, bringing together the scattered and often inaccessible results for graduate students and professionals. Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The introductory chapter presents the background of discrete choice analysis and context of transportation demand forecasting. Subsequent chapters cover, among other topics, the theories of individual choice behavior, binary and multinomial choice models, aggregate forecasting techniques, estimation methods, tests used in the process of model development, sampling theory, the nested-logit model, and systems of models. Discrete Choice Analysis is ninth in the MIT Press Series in Transportation Studies, edited by Marvin Manheim.
In order to respond to the dynamic changes taking place in the competitive world of tourism, marketing programs need to be constantly adjusted and updated to take account of new market research. Recent Advances in Tourism Marketing Research offers tourism marketers an excellent basis for developing and evaluating their marketing efforts. The book explores exciting new approaches to conducting tourism marketing research and presents applications which will help you develop and implement new tourism marketing strategies in your business.Chapters in Recent Advances in Tourism Marketing Research reflect the recent explosion of high quality tourism marketing research. Authors come from a number of disciplines and perspectives, ranging from more traditional programs such as hotel, restaurant, and tourism management and leisure studies to geography, urban and regional planning, and sociology. This fusion of diverse ideas gives you innovative insight into important tourism marketing issues including: market segmentation importance-performance analysis tourism demand forecasting destination choice modeling experience-based sampling methods qualitative methods in tourism researchRecent Advances in Tourism Marketing Research positions international tourism within the broader context of the worldwide services economy. It shows marketing and tourism professionals the significance of changing tourism issues and trends based on results of current research which will drive future marketing strategies, and it helps them see their own strategies in light of the future. This unique book helps tourism marketers shape the future of their marketing programs for a tourism product that challenges traditional ways of conducting tourism business. Destination promoters, decisionmakers, and planners in tourism and students and educators of tourism, hospitality, and leisure studies worldwide will find the diversity and originality of the research presented in Recent Advances in Tourism Marketing Research essential for developing successful marketing strategies now and in the future. Also, libraries of schools that have leisure and recreation, tourism, hospitality, marketing, and service programs will want to make this invaluable resource readily available to their patrons.
In recent years, spatial analysis has become an increasingly active field, as evidenced by the establishment of educational and research programs at many universities. Its popularity is due mainly to new technologies and the development of spatial data infrastructures. This book illustrates some recent developments in spatial analysis, behavioural modelling, and computational intelligence. World renown spatial analysts explain and demonstrate their new and insightful models and methods. The applications are in areas of societal interest such as the spread of infectious diseases, migration behaviour, and retail and agricultural location strategies. In addition, there is emphasis on the uses of new technologoies for the analysis of spatial data through the application of neural network concepts.
In recent years, airline practitioners and academics have started to explore new ways to model airline passenger demand using discrete choice methods. This book provides an introduction to discrete choice models and uses extensive examples to illustrate how these models have been used in the airline industry. These examples span network planning, revenue management, and pricing applications. Numerous examples of fundamental logit modeling concepts are covered in the text, including probability calculations, value of time calculations, elasticity calculations, nested and non-nested likelihood ratio tests, etc. The core chapters of the book are written at a level appropriate for airline practitioners and graduate students with operations research or travel demand modeling backgrounds. Given the majority of discrete choice modeling advancements in transportation evolved from urban travel demand studies, the introduction first orients readers from different backgrounds by highlighting major distinctions between aviation and urban travel demand studies. This is followed by an in-depth treatment of two of the most common discrete choice models, namely the multinomial and nested logit models. More advanced discrete choice models are covered, including mixed logit models and generalized extreme value models that belong to the generalized nested logit class and/or the network generalized extreme value class. An emphasis is placed on highlighting open research questions associated with these models that will be of particular interest to operations research students. Practical modeling issues related to data and estimation software are also addressed, and an extensive modeling exercise focused on the interpretation and application of statistical tests used to guide the selection of a preferred model specification is included; the modeling exercise uses itinerary choice data from a major airline. The text concludes with a discussion of on-going customer modeling research in aviation. Discrete Choice Modelling and Air Travel Demand is enriched by a comprehensive set of technical appendices that will be of particular interest to advanced students of discrete choice modeling theory. The appendices also include detailed proofs of the multinomial and nested logit models and derivations of measures used to represent competition among alternatives, namely correlation, direct-elasticities, and cross-elasticities.
A textbook for a graduate or final-year undergraduate course in tourism studies that might also find interest among researchers and practitioners who want to apply recent developments in econometric modeling and forecasting to tourism demand analysis. Song and Witt (both management in the service sector, U. of Surrey, Britain) begin with the fundamentals of tourism demand analysis, and the problems of traditional modeling and forecasting. Then they explore the general- to-specific approach, the time-varying parameter model, and the panel- data approach. Annotation copyrighted by Book News, Inc., Portland, OR