Under the vast umbrella of Plant Sciences resides a plethora of highly specialized fields. Botanists, agronomists, horticulturists, geneticists, and physiologists each employ a different approach to the study of plants and each for a different end goal. Yet all will find themselves in the laboratory engaging in what can broadly be termed biotechnol
This book is divided into five sections. The first section deals with the methodology and bioresource generation, techniques related to genetic engineering, and gene transfer to the nuclear genome and chloroplast genome. The new techniques of genome profiling and gene silencing are also presented. The second section of the book covers the classical aspect of plant biotechnology viz. tissue culture and micropropagation. Use of genetic engineering via Agrobacterium and direct transfer of DNA through particle bombardment to develop transformed plants in Artemisia, castor and orchids, and production of recombinant proteins in plant cells have been dealt with in the third section. The fourth section addresses the abiotic and biotic stress tolerance in plants. The basic biology of some of the stress responses, and designing plants for stress tolerance is discussed in this section. The fifth section examines medicinal plants and alkaloid production.
The purpose of this book is to provide the advances in plant in vitro culture as related to perennial fruit crops and medicinal plants. Basic principles and new techniques, now available, are presented in detail. The book will be of use to researchers, teachers in biotechnology and for individuals interested to the commercial application of plant in vitro culture.
Allen I. Laskin Biosciences Research Exxon Research and Engineering Company Linden, New Jersey I was contacted in the Fall of 1981 by Professors Martin Dworkin and Palmer Rogers, of the University of Minnesota and asked to participate in the orgnization of the 1983 conference in the series, "Interface Between Biology and Medicine". They and the other members of the advisory committee had the vision to realize that this was a time to depart somewhat from the traditional theme, since one of the major areas of interest in the biological and related sciences these days is that of biotechnology in a broader sense than its impact on medicine alone. In designing the format of the Conference, we considered another factor. There has been a plethora of conferences, symposia, and meetings on biotechnology over the past few years, and the faces and topics have become rather familiar. There has been a strong emphasis on the development of the technology and the "biotechnology industry"; less attention has been paid to the science behind it. One might get the impression from some of these meetings and from the popular press that biotechnology has just recently sprung up, apparently full blown; the very fundamental scientific discoveries and the great body of 1 ALLEN I. LASKIN 2 continuing research that forms that basis for the technology is often obscured.
Modern Applications of Plant Biotechnology in Pharmaceutical Sciences explores advanced techniques in plant biotechnology, their applications to pharmaceutical sciences, and how these methods can lead to more effective, safe, and affordable drugs. The book covers modern approaches in a practical, step-by-step manner, and includes illustrations, examples, and case studies to enhance understanding. Key topics include plant-made pharmaceuticals, classical and non-classical techniques for secondary metabolite production in plant cell culture and their relevance to pharmaceutical science, edible vaccines, novel delivery systems for plant-based products, international industry regulatory guidelines, and more. Readers will find the book to be a comprehensive and valuable resource for the study of modern plant biotechnology approaches and their pharmaceutical applications. - Builds upon the basic concepts of cell and plant tissue culture and recombinant DNA technology to better illustrate the modern and potential applications of plant biotechnology to the pharmaceutical sciences - Provides detailed yet practical coverage of complex techniques, such as micropropogation, gene transfer, and biosynthesis - Examines critical issues of international importance and offers real-life examples and potential solutions
This manual provides all relevant protocols for basic and applied plant cell and molecular technologies, such as histology, electron microscopy, cytology, virus diagnosis, gene transfer and PCR. Also included are chapters on laboratory facilities, operation and management as well as a glossary and all the information needed to set up and carry out any of the procedures without having to use other resource books. It is especially designed for professionals and advanced students who wish to acquire practical skills and first-hand experience in plant biotechnology.
This book provides a general introduction as well as a selected survey of key advances in the fascinating field of plant cell and tissue culture as a tool in biotechnology. After a detailed description of the various basic techniques employed in leading laboratories worldwide, follows an extended account of important applications in, for example, plant propagation, secondary metabolite production and gene technology. Additionally, some chapters are devoted to historical developments in this domain, metabolic aspects, nutrition, growth regulators, differentiation and the development of culture systems. The book will prove useful to both newcomers and specialists, and even “old hands” in tissue culture should find some challenging ideas to think about.
During the past decade, Plant Tissue Culture (PTC) has attracted considerable attention because of its vital role in plant biotechnology. PTC offers novel approaches to plant production, propagation, and preservation. Some in vitro techniques are being applied on a commercial scale while many others hold great potential. Consequently, the literature in this area has grown rapidly.This book deals with recent developments in plant tissue culture, and presents a critical assessment of the proven and potential applications of the various in vitro techniques, it also highlights current problems limiting the application of tissue culture, and projects the future lines of research in this field.