Recent Advances in Mathematical and Statistical Methods

Recent Advances in Mathematical and Statistical Methods

Author: D. Marc Kilgour

Publisher: Springer

Published: 2018-11-04

Total Pages: 622

ISBN-13: 331999719X

DOWNLOAD EBOOK

This book focuses on the recent development of methodologies and computation methods in mathematical and statistical modelling, computational science and applied mathematics. It emphasizes the development of theories and applications, and promotes interdisciplinary endeavour among mathematicians, statisticians, scientists, engineers and researchers from other disciplines. The book provides ideas, methods and tools in mathematical and statistical modelling that have been developed for a wide range of research fields, including medical, health sciences, biology, environmental science, engineering, physics and chemistry, finance, economics and social sciences. It presents original results addressing real-world problems. The contributions are products of a highly successful meeting held in August 2017 on the main campus of Wilfrid Laurier University, in Waterloo, Canada, the International Conference on Applied Mathematics, Modeling and Computational Science (AMMCS-2017). They make this book a valuable resource for readers interested not only in a broader overview of the methods, ideas and tools in mathematical and statistical approaches, but also in how they can attain valuable insights into problems arising in other disciplines.


Understanding Advanced Statistical Methods

Understanding Advanced Statistical Methods

Author: Peter Westfall

Publisher: CRC Press

Published: 2013-04-09

Total Pages: 572

ISBN-13: 1466512105

DOWNLOAD EBOOK

Providing a much-needed bridge between elementary statistics courses and advanced research methods courses, Understanding Advanced Statistical Methods helps students grasp the fundamental assumptions and machinery behind sophisticated statistical topics, such as logistic regression, maximum likelihood, bootstrapping, nonparametrics, and Bayesian methods. The book teaches students how to properly model, think critically, and design their own studies to avoid common errors. It leads them to think differently not only about math and statistics but also about general research and the scientific method. With a focus on statistical models as producers of data, the book enables students to more easily understand the machinery of advanced statistics. It also downplays the "population" interpretation of statistical models and presents Bayesian methods before frequentist ones. Requiring no prior calculus experience, the text employs a "just-in-time" approach that introduces mathematical topics, including calculus, where needed. Formulas throughout the text are used to explain why calculus and probability are essential in statistical modeling. The authors also intuitively explain the theory and logic behind real data analysis, incorporating a range of application examples from the social, economic, biological, medical, physical, and engineering sciences. Enabling your students to answer the why behind statistical methods, this text teaches them how to successfully draw conclusions when the premises are flawed. It empowers them to use advanced statistical methods with confidence and develop their own statistical recipes. Ancillary materials are available on the book’s website.


Recent Developments in Mathematical, Statistical and Computational Sciences

Recent Developments in Mathematical, Statistical and Computational Sciences

Author: D. Marc Kilgour

Publisher: Springer

Published: 2022-08-31

Total Pages: 0

ISBN-13: 9783030635930

DOWNLOAD EBOOK

This book constitutes an up-to-date account of principles, methods, and tools for mathematical and statistical modelling in a wide range of research fields, including medicine, health sciences, biology, environmental science, engineering, physics, chemistry, computation, finance, economics, and social sciences. It presents original solutions to real-world problems, emphasizes the coordinated development of theories and applications, and promotes interdisciplinary collaboration among mathematicians, statisticians, and researchers in other disciplines. Based on a highly successful meeting, the International Conference on Applied Mathematics, Modeling and Computational Science, AMMCS 2019, held from August 18 to 23, 2019, on the main campus of Wilfrid Laurier University, Waterloo, Canada, the contributions are the results of submissions from the conference participants. They provide readers with a broader view of the methods, ideas and tools used in mathematical, statistical and computational sciences.


Advances in Statistical Methodologies and Their Application to Real Problems

Advances in Statistical Methodologies and Their Application to Real Problems

Author: Tsukasa Hokimoto

Publisher: BoD – Books on Demand

Published: 2017-04-26

Total Pages: 327

ISBN-13: 953513101X

DOWNLOAD EBOOK

In recent years, statistical techniques and methods for data analysis have advanced significantly in a wide range of research areas. These developments enable researchers to analyze increasingly large datasets with more flexibility and also more accurately estimate and evaluate the phenomena they study. We recognize the value of recent advances in data analysis techniques in many different research fields. However, we also note that awareness of these different statistical and probabilistic approaches may vary, owing to differences in the datasets typical of different research fields. This book provides a cross-disciplinary forum for exploring the variety of new data analysis techniques emerging from different fields.


Mathematical and Statistical Methods in Food Science and Technology

Mathematical and Statistical Methods in Food Science and Technology

Author: Daniel Granato

Publisher: John Wiley & Sons

Published: 2014-03-03

Total Pages: 540

ISBN-13: 1118433688

DOWNLOAD EBOOK

Mathematical and Statistical Approaches in Food Science and Technology offers an accessible guide to applying statistical and mathematical technologies in the food science field whilst also addressing the theoretical foundations. Using clear examples and case-studies by way of practical illustration, the book is more than just a theoretical guide for non-statisticians, and may therefore be used by scientists, students and food industry professionals at different levels and with varying degrees of statistical skill.


Mathematical and Statistical Models and Methods in Reliability

Mathematical and Statistical Models and Methods in Reliability

Author: V.V. Rykov

Publisher: Springer Science & Business Media

Published: 2010-11-02

Total Pages: 465

ISBN-13: 0817649719

DOWNLOAD EBOOK

The book is a selection of invited chapters, all of which deal with various aspects of mathematical and statistical models and methods in reliability. Written by renowned experts in the field of reliability, the contributions cover a wide range of applications, reflecting recent developments in areas such as survival analysis, aging, lifetime data analysis, artificial intelligence, medicine, carcinogenesis studies, nuclear power, financial modeling, aircraft engineering, quality control, and transportation. Mathematical and Statistical Models and Methods in Reliability is an excellent reference text for researchers and practitioners in applied probability and statistics, industrial statistics, engineering, medicine, finance, transportation, the oil and gas industry, and artificial intelligence.


Statistical Methods for Handling Incomplete Data

Statistical Methods for Handling Incomplete Data

Author: Jae Kwang Kim

Publisher: CRC Press

Published: 2021-11-19

Total Pages: 380

ISBN-13: 1000466299

DOWNLOAD EBOOK

Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data. Features Uses the mean score equation as a building block for developing the theory for missing data analysis Provides comprehensive coverage of computational techniques for missing data analysis Presents a rigorous treatment of imputation techniques, including multiple imputation fractional imputation Explores the most recent advances of the propensity score method and estimation techniques for nonignorable missing data Describes a survey sampling application Updated with a new chapter on Data Integration Now includes a chapter on Advanced Topics, including kernel ridge regression imputation and neural network model imputation The book is primarily aimed at researchers and graduate students from statistics, and could be used as a reference by applied researchers with a good quantitative background. It includes many real data examples and simulated examples to help readers understand the methodologies.


Advances in Probability and Mathematical Statistics

Advances in Probability and Mathematical Statistics

Author: Daniel Hernández‐Hernández

Publisher: Springer Nature

Published: 2021-11-14

Total Pages: 178

ISBN-13: 303085325X

DOWNLOAD EBOOK

This volume contains papers which were presented at the XV Latin American Congress of Probability and Mathematical Statistics (CLAPEM) in December 2019 in Mérida-Yucatán, México. They represent well the wide set of topics on probability and statistics that was covered at this congress, and their high quality and variety illustrates the rich academic program of the conference.


Current Trends in Mathematical Analysis and Its Interdisciplinary Applications

Current Trends in Mathematical Analysis and Its Interdisciplinary Applications

Author: Hemen Dutta

Publisher: Springer Nature

Published: 2019-08-23

Total Pages: 912

ISBN-13: 3030152421

DOWNLOAD EBOOK

This book explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. Each of the 23 carefully reviewed chapters was written by experienced expert(s) in respective field, and will enrich readers’ understanding of the respective research problems, providing them with sufficient background to understand the theories, methods and applications discussed. The book’s main goal is to highlight the latest trends and advances, equipping interested readers to pursue further research of their own. Given its scope, the book will especially benefit graduate and PhD students, researchers in the applied sciences, educators, and engineers with an interest in recent developments in the interdisciplinary applications of mathematical analysis.


Some Recent Advances in Mathematics and Statistics

Some Recent Advances in Mathematics and Statistics

Author: Yogendra P. Chaubey

Publisher: World Scientific

Published: 2013

Total Pages: 276

ISBN-13: 981441798X

DOWNLOAD EBOOK

This volume consists of a series of research papers presented at the conference Statistics 2011 Canada: 5th Canadian Conference in Applied Statistics held together with the 20th conference of the Forum for Interdisciplinary Mathematics titled, OC Interdisciplinary Mathematical & Statistical TechniquesOCO. These papers cover a wide range of topics from applications of Mathematics and Statistics such as Selection Bias in Surveys, Biomarker Discovery, Analysis of Earth Temperature, Supply Chain Management, Trimmed ANOVA, Zero-inflated Data, Non-Gaussian Time Series, and Stochastic Ordering; Classification, Nonparametric Test, and Jackknifed Ridge Estimator; Bayes Factor; Random Graphs and Error Correcting Codes; Meta Analysis; and National Health Plans and Risk Reduction through Supply Chain.The topics have been reviewed by experts in the field and the selected papers are expected to provide a topical resource on the subjects concerned.