Real Analysis and Foundations, Fourth Edition

Real Analysis and Foundations, Fourth Edition

Author: Steven G. Krantz

Publisher: CRC Press

Published: 2016-12-12

Total Pages: 306

ISBN-13: 1498777708

DOWNLOAD EBOOK

A Readable yet Rigorous Approach to an Essential Part of Mathematical Thinking Back by popular demand, Real Analysis and Foundations, Third Edition bridges the gap between classic theoretical texts and less rigorous ones, providing a smooth transition from logic and proofs to real analysis. Along with the basic material, the text covers Riemann-Stieltjes integrals, Fourier analysis, metric spaces and applications, and differential equations. New to the Third Edition Offering a more streamlined presentation, this edition moves elementary number systems and set theory and logic to appendices and removes the material on wavelet theory, measure theory, differential forms, and the method of characteristics. It also adds a chapter on normed linear spaces and includes more examples and varying levels of exercises. Extensive Examples and Thorough Explanations Cultivate an In-Depth Understanding This best-selling book continues to give students a solid foundation in mathematical analysis and its applications. It prepares them for further exploration of measure theory, functional analysis, harmonic analysis, and beyond.


Real Analysis (Classic Version)

Real Analysis (Classic Version)

Author: Halsey Royden

Publisher: Pearson Modern Classics for Advanced Mathematics Series

Published: 2017-02-13

Total Pages: 0

ISBN-13: 9780134689494

DOWNLOAD EBOOK

This text is designed for graduate-level courses in real analysis. Real Analysis, 4th Edition, covers the basic material that every graduate student should know in the classical theory of functions of a real variable, measure and integration theory, and some of the more important and elementary topics in general topology and normed linear space theory. This text assumes a general background in undergraduate mathematics and familiarity with the material covered in an undergraduate course on the fundamental concepts of analysis.


Real Analysis

Real Analysis

Author: Gerald B. Folland

Publisher: John Wiley & Sons

Published: 2013-06-11

Total Pages: 368

ISBN-13: 1118626397

DOWNLOAD EBOOK

An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.


Real Analysis

Real Analysis

Author: Miklós Laczkovich

Publisher: Springer

Published: 2015-10-08

Total Pages: 486

ISBN-13: 1493927663

DOWNLOAD EBOOK

Based on courses given at Eötvös Loránd University (Hungary) over the past 30 years, this introductory textbook develops the central concepts of the analysis of functions of one variable — systematically, with many examples and illustrations, and in a manner that builds upon, and sharpens, the student’s mathematical intuition. The book provides a solid grounding in the basics of logic and proofs, sets, and real numbers, in preparation for a study of the main topics: limits, continuity, rational functions and transcendental functions, differentiation, and integration. Numerous applications to other areas of mathematics, and to physics, are given, thereby demonstrating the practical scope and power of the theoretical concepts treated. In the spirit of learning-by-doing, Real Analysis includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study.


Foundations of Analysis

Foundations of Analysis

Author: Joseph L. Taylor

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 411

ISBN-13: 0821889842

DOWNLOAD EBOOK

Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.


Real Analysis

Real Analysis

Author: N. L. Carothers

Publisher: Cambridge University Press

Published: 2000-08-15

Total Pages: 420

ISBN-13: 9780521497565

DOWNLOAD EBOOK

A text for a first graduate course in real analysis for students in pure and applied mathematics, statistics, education, engineering, and economics.


Foundations of Mathematical Analysis

Foundations of Mathematical Analysis

Author: Saminathan Ponnusamy

Publisher: Springer Science & Business Media

Published: 2011-12-16

Total Pages: 575

ISBN-13: 0817682910

DOWNLOAD EBOOK

Mathematical analysis is fundamental to the undergraduate curriculum not only because it is the stepping stone for the study of advanced analysis, but also because of its applications to other branches of mathematics, physics, and engineering at both the undergraduate and graduate levels. This self-contained textbook consists of eleven chapters, which are further divided into sections and subsections. Each section includes a careful selection of special topics covered that will serve to illustrate the scope and power of various methods in real analysis. The exposition is developed with thorough explanations, motivating examples, exercises, and illustrations conveying geometric intuition in a pleasant and informal style to help readers grasp difficult concepts. Foundations of Mathematical Analysis is intended for undergraduate students and beginning graduate students interested in a fundamental introduction to the subject. It may be used in the classroom or as a self-study guide without any required prerequisites.


Real Mathematical Analysis

Real Mathematical Analysis

Author: Charles Chapman Pugh

Publisher: Springer Science & Business Media

Published: 2013-03-19

Total Pages: 445

ISBN-13: 0387216847

DOWNLOAD EBOOK

Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.


Number Systems and the Foundations of Analysis

Number Systems and the Foundations of Analysis

Author: Elliott Mendelson

Publisher: Dover Books on Mathematics

Published: 2008

Total Pages: 0

ISBN-13: 9780486457925

DOWNLOAD EBOOK

Geared toward undergraduate and beginning graduate students, this study explores natural numbers, integers, rational numbers, real numbers, and complex numbers. Numerous exercises and appendixes supplement the text. 1973 edition.


Analysis I

Analysis I

Author: Terence Tao

Publisher: Springer

Published: 2016-08-29

Total Pages: 366

ISBN-13: 9811017891

DOWNLOAD EBOOK

This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.