The book presents models for the pricing of financial assets such as stocks, bonds, and options. The models are formulated and analyzed using concepts and techniques from mathematics and probability theory. It presents important classic models and some recent 'state-of-the-art' models that outperform the classics.
The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics
In this remarkable stock market study, one of Wall Street’s best known market analysts reveals a new technical tool he developed for gauging the pulse of the trading cycle. Called the On Balance Volume Theory, this tool tends to fill in some of the conspicuous voids in the famous Dow Theory—especially the lack of discussion and use of stock volume figures. As straightforward as a set of bridge rules, on-balance volume (OBV) denotes each buy and sell signal so that a trader can follow them without his own emotions tending to lead him astray—emotions causing most of the market misjudgements that take place. The Granville OBV method is essentially scientific, has a high degree of accuracy and has many automatic features. The reader of this book will be introduced to a method whereby he may benefit by the earlier movements of volume over price—the “early warning” radar of volume buy and sell signals.
This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections
This book provides a comprehensive guide to market timing using moving averages. Part I explores the foundations of market timing rules, presenting a methodology for examining how the value of a trading indicator is computed. Using this methodology the author then applies the computation of trading indicators to a variety of market timing rules to analyse the commonalities and differences between the rules. Part II goes on to present a comprehensive analysis of the empirical performance of trading rules based on moving averages.
This volume provides practical solutions and introduces recent theoretical developments in risk management, pricing of credit derivatives, quantification of volatility and copula modeling. This third edition is devoted to modern risk analysis based on quantitative methods and textual analytics to meet the current challenges in banking and finance. It includes 14 new contributions and presents a comprehensive, state-of-the-art treatment of cutting-edge methods and topics, such as collateralized debt obligations, the high-frequency analysis of market liquidity, and realized volatility. The book is divided into three parts: Part 1 revisits important market risk issues, while Part 2 introduces novel concepts in credit risk and its management along with updated quantitative methods. The third part discusses the dynamics of risk management and includes risk analysis of energy markets and for cryptocurrencies. Digital assets, such as blockchain-based currencies, have become popular b ut are theoretically challenging when based on conventional methods. Among others, it introduces a modern text-mining method called dynamic topic modeling in detail and applies it to the message board of Bitcoins. The unique synthesis of theory and practice supported by computational tools is reflected not only in the selection of topics, but also in the fine balance of scientific contributions on practical implementation and theoretical concepts. This link between theory and practice offers theoreticians insights into considerations of applicability and, vice versa, provides practitioners convenient access to new techniques in quantitative finance. Hence the book will appeal both to researchers, including master and PhD students, and practitioners, such as financial engineers. The results presented in the book are fully reproducible and all quantlets needed for calculations are provided on an accompanying website. The Quantlet platform quantlet.de, quantlet.com, quantlet.org is an integrated QuantNet environment consisting of different types of statistics-related documents and program codes. Its goal is to promote reproducibility and offer a platform for sharing validated knowledge native to the social web. QuantNet and the corresponding Data-Driven Documents-based visualization allows readers to reproduce the tables, pictures and calculations inside this Springer book.
An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
This book contributes to re cent developments on the statistical analysis of multiple time series in the presence of regime shifts. Markov-switching models have become popular for modelling non-linearities and regime shifts, mainly, in univariate eco nomic time series. This study is intended to provide a systematic and operational ap proach to the econometric modelling of dynamic systems subject to shifts in regime, based on the Markov-switching vector autoregressive model. The study presents a comprehensive analysis of the theoretical properties of Markov-switching vector autoregressive processes and the related statistical methods. The statistical concepts are illustrated with applications to empirical business cyde research. This monograph is a revised version of my dissertation which has been accepted by the Economics Department of the Humboldt-University of Berlin in 1996. It con sists mainly of unpublished material which has been presented during the last years at conferences and in seminars. The major parts of this study were written while I was supported by the Deutsche Forschungsgemeinschajt (DFG), Berliner Graduier tenkolleg Angewandte Mikroökonomik and Sondeiforschungsbereich 373 at the Free University and Humboldt-University of Berlin. Work was finally completed in the project The Econometrics of Macroeconomic Forecasting founded by the Economic and Social Research Council (ESRC) at the Institute of Economies and Statistics, University of Oxford. It is a pleasure to record my thanks to these institutions for their support of my research embodied in this study.
Both state-space models and Markov switching models have been highly productive paths for empirical research in macroeconomics and finance. This book presents recent advances in econometric methods that make feasible the estimation of models that have both features. One approach, in the classical framework, approximates the likelihood function; the other, in the Bayesian framework, uses Gibbs-sampling to simulate posterior distributions from data.The authors present numerous applications of these approaches in detail: decomposition of time series into trend and cycle, a new index of coincident economic indicators, approaches to modeling monetary policy uncertainty, Friedman's "plucking" model of recessions, the detection of turning points in the business cycle and the question of whether booms and recessions are duration-dependent, state-space models with heteroskedastic disturbances, fads and crashes in financial markets, long-run real exchange rates, and mean reversion in asset returns.