Randomization Methods in Algorithm Design

Randomization Methods in Algorithm Design

Author: Panos M. Pardalos

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 335

ISBN-13: 0821809164

DOWNLOAD EBOOK

This volume is based on proceedings held during the DIMACS workshop on Randomization Methods in Algorithm Design in December 1997 at Princeton. The workshop was part of the DIMACS Special Year on Discrete Probability. It served as an interdisciplinary research workshop that brought together a mix of leading theorists, algorithmists and practitioners working in the theory and implementation aspects of algorithms involving randomization. Randomization has played an important role in the design of both sequential and parallel algorithms. The last decade has witnessed tremendous growth in the area of randomized algorithms. During this period, randomized algorithms went from being a tool in computational number theory to finding widespread applications in many problem domains. Major topics covered include randomization techniques for linear and integer programming problems, randomization in the design of approximate algorithms for combinatorial problems, randomization in parallel and distributed algorithms, practical implementation of randomized algorithms, de-randomization issues, and pseudo-random generators. This volume focuses on theory and implementation aspects of algorithms involving randomization. It would be suitable as a graduate or advanced graduate text.


Randomized Algorithms

Randomized Algorithms

Author: Rajeev Motwani

Publisher: Cambridge University Press

Published: 1995-08-25

Total Pages: 496

ISBN-13: 1139643134

DOWNLOAD EBOOK

For many applications a randomized algorithm is either the simplest algorithm available, or the fastest, or both. This tutorial presents the basic concepts in the design and analysis of randomized algorithms. The first part of the book presents tools from probability theory and probabilistic analysis that are recurrent in algorithmic applications. Algorithmic examples are given to illustrate the use of each tool in a concrete setting. In the second part of the book, each of the seven chapters focuses on one important area of application of randomized algorithms: data structures; geometric algorithms; graph algorithms; number theory; enumeration; parallel algorithms; and on-line algorithms. A comprehensive and representative selection of the algorithms in these areas is also given. This book should prove invaluable as a reference for researchers and professional programmers, as well as for students.


Randomized Algorithms for Analysis and Control of Uncertain Systems

Randomized Algorithms for Analysis and Control of Uncertain Systems

Author: Roberto Tempo

Publisher: Springer Science & Business Media

Published: 2012-10-21

Total Pages: 363

ISBN-13: 1447146107

DOWNLOAD EBOOK

The presence of uncertainty in a system description has always been a critical issue in control. The main objective of Randomized Algorithms for Analysis and Control of Uncertain Systems, with Applications (Second Edition) is to introduce the reader to the fundamentals of probabilistic methods in the analysis and design of systems subject to deterministic and stochastic uncertainty. The approach propounded by this text guarantees a reduction in the computational complexity of classical control algorithms and in the conservativeness of standard robust control techniques. The second edition has been thoroughly updated to reflect recent research and new applications with chapters on statistical learning theory, sequential methods for control and the scenario approach being completely rewritten. Features: · self-contained treatment explaining Monte Carlo and Las Vegas randomized algorithms from their genesis in the principles of probability theory to their use for system analysis; · development of a novel paradigm for (convex and nonconvex) controller synthesis in the presence of uncertainty and in the context of randomized algorithms; · comprehensive treatment of multivariate sample generation techniques, including consideration of the difficulties involved in obtaining identically and independently distributed samples; · applications of randomized algorithms in various endeavours, such as PageRank computation for the Google Web search engine, unmanned aerial vehicle design (both new in the second edition), congestion control of high-speed communications networks and stability of quantized sampled-data systems. Randomized Algorithms for Analysis and Control of Uncertain Systems (second edition) is certain to interest academic researchers and graduate control students working in probabilistic, robust or optimal control methods and control engineers dealing with system uncertainties. The present book is a very timely contribution to the literature. I have no hesitation in asserting that it will remain a widely cited reference work for many years. M. Vidyasagar


Methods of Randomization in Experimental Design

Methods of Randomization in Experimental Design

Author: Valentim R. Alferes

Publisher: SAGE

Published: 2012-10

Total Pages: 209

ISBN-13: 1452202923

DOWNLOAD EBOOK

This text provides a conceptual systematization and a practical tool for the randomization of between-subjects and within-subjects experimental designs.


Randomization in Clinical Trials

Randomization in Clinical Trials

Author: William F. Rosenberger

Publisher: John Wiley & Sons

Published: 2015-11-23

Total Pages: 284

ISBN-13: 1118742249

DOWNLOAD EBOOK

Praise for the First Edition “All medical statisticians involved in clinical trials should read this book...” - Controlled Clinical Trials Featuring a unique combination of the applied aspects of randomization in clinical trials with a nonparametric approach to inference, Randomization in Clinical Trials: Theory and Practice, Second Edition is the go-to guide for biostatisticians and pharmaceutical industry statisticians. Randomization in Clinical Trials: Theory and Practice, Second Edition features: Discussions on current philosophies, controversies, and new developments in the increasingly important role of randomization techniques in clinical trials A new chapter on covariate-adaptive randomization, including minimization techniques and inference New developments in restricted randomization and an increased focus on computation of randomization tests as opposed to the asymptotic theory of randomization tests Plenty of problem sets, theoretical exercises, and short computer simulations using SAS® to facilitate classroom teaching, simplify the mathematics, and ease readers’ understanding Randomization in Clinical Trials: Theory and Practice, Second Edition is an excellent reference for researchers as well as applied statisticians and biostatisticians. The Second Edition is also an ideal textbook for upper-undergraduate and graduate-level courses in biostatistics and applied statistics. William F. Rosenberger, PhD, is University Professor and Chairman of the Department of Statistics at George Mason University. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics, and author of over 80 refereed journal articles, as well as The Theory of Response-Adaptive Randomization in Clinical Trials, also published by Wiley. John M. Lachin, ScD, is Research Professor in the Department of Epidemiology and Biostatistics as well as in the Department of Statistics at The George Washington University. A Fellow of the American Statistical Association and the Society for Clinical Trials, Dr. Lachin is actively involved in coordinating center activities for clinical trials of diabetes. He is the author of Biostatistical Methods: The Assessment of Relative Risks, Second Edition, also published by Wiley.


Randomization, Approximation, and Combinatorial Optimization. Algorithms and Techniques

Randomization, Approximation, and Combinatorial Optimization. Algorithms and Techniques

Author: Dorit Hochbaum

Publisher: Springer

Published: 2004-04-22

Total Pages: 297

ISBN-13: 3540484132

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third International Workshop on Randomization and Approximation Techniques in Computer Science, RANDOM'99, held jointly with the Second International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX'99, in Berkeley, California in August 1999. The volume presents 24 revised full papers selected from 44 submissions and four invited contributions. The papers present a wealth of new results and document the state-of-the-art in the areas covered by the workshop.


The Algorithm Design Manual

The Algorithm Design Manual

Author: Steven S Skiena

Publisher: Springer Science & Business Media

Published: 2009-04-05

Total Pages: 742

ISBN-13: 1848000707

DOWNLOAD EBOOK

This newly expanded and updated second edition of the best-selling classic continues to take the "mystery" out of designing algorithms, and analyzing their efficacy and efficiency. Expanding on the first edition, the book now serves as the primary textbook of choice for algorithm design courses while maintaining its status as the premier practical reference guide to algorithms for programmers, researchers, and students. The reader-friendly Algorithm Design Manual provides straightforward access to combinatorial algorithms technology, stressing design over analysis. The first part, Techniques, provides accessible instruction on methods for designing and analyzing computer algorithms. The second part, Resources, is intended for browsing and reference, and comprises the catalog of algorithmic resources, implementations and an extensive bibliography. NEW to the second edition: • Doubles the tutorial material and exercises over the first edition • Provides full online support for lecturers, and a completely updated and improved website component with lecture slides, audio and video • Contains a unique catalog identifying the 75 algorithmic problems that arise most often in practice, leading the reader down the right path to solve them • Includes several NEW "war stories" relating experiences from real-world applications • Provides up-to-date links leading to the very best algorithm implementations available in C, C++, and Java


The Random Projection Method

The Random Projection Method

Author: Santosh S. Vempala

Publisher: American Mathematical Soc.

Published: 2005-02-24

Total Pages: 120

ISBN-13: 0821837931

DOWNLOAD EBOOK

Random projection is a simple geometric technique for reducing the dimensionality of a set of points in Euclidean space while preserving pairwise distances approximately. The technique plays a key role in several breakthrough developments in the field of algorithms. In other cases, it provides elegant alternative proofs. The book begins with an elementary description of the technique and its basic properties. Then it develops the method in the context of applications, which are divided into three groups. The first group consists of combinatorial optimization problems such as maxcut, graph coloring, minimum multicut, graph bandwidth and VLSI layout. Presented in this context is the theory of Euclidean embeddings of graphs. The next group is machine learning problems, specifically, learning intersections of halfspaces and learning large margin hypotheses. The projection method is further refined for the latter application. The last set consists of problems inspired by information retrieval, namely, nearest neighbor search, geometric clustering and efficient low-rank approximation. Motivated by the first two applications, an extension of random projection to the hypercube is developed here. Throughout the book, random projection is used as a way to understand, simplify and connect progress on these important and seemingly unrelated problems. The book is suitable for graduate students and research mathematicians interested in computational geometry.


Algorithmic and Analysis Techniques in Property Testing

Algorithmic and Analysis Techniques in Property Testing

Author: Dana Ron

Publisher: Now Publishers Inc

Published: 2010

Total Pages: 151

ISBN-13: 1601983182

DOWNLOAD EBOOK

Property testing algorithms are ultra"-efficient algorithms that decide whether a given object (e.g., a graph) has a certain property (e.g., bipartiteness), or is significantly different from any object that has the property. To this end property testing algorithms are given the ability to perform (local) queries to the input, though the decisions they need to make usually concern properties with a global nature. In the last two decades, property testing algorithms have been designed for many types of objects and properties, amongst them, graph properties, algebraic properties, geometric properties, and more. In this article we survey results in property testing, where our emphasis is on common analysis and algorithmic techniques. Among the techniques surveyed are the following: a) The self-correcting approach, which was mainly applied in the study of property testing of algebraic properties; b) The enforce and test approach, which was applied quite extensively in the analysis of algorithms for testing graph properties (in the dense-graphs model), as well as in other contexts; c) Szemeredi's Regularity Lemma, which plays a very important role in the analysis of algorithms for testing graph properties (in the dense-graphs model); d) The approach of Testing by implicit learning, which implies efficient testability of membership in many functions classes. e) Algorithmic techniques for testing properties of sparse graphs, which include local search and random walks.