Random Circulant Matrices

Random Circulant Matrices

Author: Arup Bose

Publisher: CRC Press

Published: 2018-11-05

Total Pages: 192

ISBN-13: 0429788193

DOWNLOAD EBOOK

Circulant matrices have been around for a long time and have been extensively used in many scientific areas. This book studies the properties of the eigenvalues for various types of circulant matrices, such as the usual circulant, the reverse circulant, and the k-circulant when the dimension of the matrices grow and the entries are random. In particular, the behavior of the spectral distribution, of the spectral radius and of the appropriate point processes are developed systematically using the method of moments and the various powerful normal approximation results. This behavior varies according as the entries are independent, are from a linear process, and are light- or heavy-tailed. Arup Bose obtained his B.Stat., M.Stat. and Ph.D. degrees from the Indian Statistical Institute. He has been on its faculty at the Theoretical Statistics and Mathematics Unit, Kolkata, India since 1991. He is a Fellow of the Institute of Mathematical Statistics, and of all three national science academies of India. He is a recipient of the S.S. Bhatnagar Prize and the C.R. Rao Award. He is the author of three books: Patterned Random Matrices, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee) and U-Statistics, M_m-Estimators and Resampling (with Snigdhansu Chatterjee). Koushik Saha obtained a B.Sc. in Mathematics from Ramakrishna Mission Vidyamandiara, Belur and an M.Sc. in Mathematics from Indian Institute of Technology Bombay. He obtained his Ph.D. degree from the Indian Statistical Institute under the supervision of Arup Bose. His thesis on circulant matrices received high praise from the reviewers. He has been on the faculty of the Department of Mathematics, Indian Institute of Technology Bombay since 2014.


Random Circulant Matrices

Random Circulant Matrices

Author: Arup Bose

Publisher: CRC Press

Published: 2018-11-05

Total Pages: 152

ISBN-13: 0429788185

DOWNLOAD EBOOK

Circulant matrices have been around for a long time and have been extensively used in many scientific areas. This book studies the properties of the eigenvalues for various types of circulant matrices, such as the usual circulant, the reverse circulant, and the k-circulant when the dimension of the matrices grow and the entries are random. In particular, the behavior of the spectral distribution, of the spectral radius and of the appropriate point processes are developed systematically using the method of moments and the various powerful normal approximation results. This behavior varies according as the entries are independent, are from a linear process, and are light- or heavy-tailed. Arup Bose obtained his B.Stat., M.Stat. and Ph.D. degrees from the Indian Statistical Institute. He has been on its faculty at the Theoretical Statistics and Mathematics Unit, Kolkata, India since 1991. He is a Fellow of the Institute of Mathematical Statistics, and of all three national science academies of India. He is a recipient of the S.S. Bhatnagar Prize and the C.R. Rao Award. He is the author of three books: Patterned Random Matrices, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee) and U-Statistics, M_m-Estimators and Resampling (with Snigdhansu Chatterjee). Koushik Saha obtained a B.Sc. in Mathematics from Ramakrishna Mission Vidyamandiara, Belur and an M.Sc. in Mathematics from Indian Institute of Technology Bombay. He obtained his Ph.D. degree from the Indian Statistical Institute under the supervision of Arup Bose. His thesis on circulant matrices received high praise from the reviewers. He has been on the faculty of the Department of Mathematics, Indian Institute of Technology Bombay since 2014.


Toeplitz and Circulant Matrices

Toeplitz and Circulant Matrices

Author: Robert M. Gray

Publisher: Now Publishers Inc

Published: 2006

Total Pages: 105

ISBN-13: 1933019239

DOWNLOAD EBOOK

The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simplicity and insight in the hope of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject. By limiting the generality of the matrices considered, the essential ideas and results can be conveyed in a more intuitive manner without the mathematical machinery required for the most general cases. As an application the results are applied to the study of the covariance matrices and their factors of linear models of discrete time random processes. The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simplicity and insight in the hope of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject. By limiting the generality of the matrices considered, the essential ideas and results can be conveyed in a more intuitive manner without the mathematical machinery required for the most general cases. As an application the results are applied to the study of the covariance matrices and their factors of linear models of discrete time random processes.


Patterned Random Matrices

Patterned Random Matrices

Author: Arup Bose

Publisher: CRC Press

Published: 2018-05-23

Total Pages: 269

ISBN-13: 0429948891

DOWNLOAD EBOOK

Large dimensional random matrices (LDRM) with specific patterns arise in econometrics, computer science, mathematics, physics, and statistics. This book provides an easy initiation to LDRM. Through a unified approach, we investigate the existence and properties of the limiting spectral distribution (LSD) of different patterned random matrices as the dimension grows. The main ingredients are the method of moments and normal approximation with rudimentary combinatorics for support. Some elementary results from matrix theory are also used. By stretching the moment arguments, we also have a brush with the intriguing but difficult concepts of joint convergence of sequences of random matrices and its ramifications. This book covers the Wigner matrix, the sample covariance matrix, the Toeplitz matrix, the Hankel matrix, the sample autocovariance matrix and the k-Circulant matrices. Quick and simple proofs of their LSDs are provided and it is shown how the semi-circle law and the March enko-Pastur law arise as the LSDs of the first two matrices. Extending the basic approach, we also establish interesting limits for some triangular matrices, band matrices, balanced matrices, and the sample autocovariance matrix. We also study the joint convergence of several patterned matrices, and show that independent Wigner matrices converge jointly and are asymptotically free of other patterned matrices. Arup Bose is a Professor at the Indian Statistical Institute, Kolkata, India. He is a distinguished researcher in Mathematical Statistics and has been working in high-dimensional random matrices for the last fifteen years. He has been the Editor of Sankyhā for several years and has been on the editorial board of several other journals. He is a Fellow of the Institute of Mathematical Statistics, USA and all three national science academies of India, as well as the recipient of the S.S. Bhatnagar Award and the C.R. Rao Award. His forthcoming books are the monograph, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee), to be published by Chapman & Hall/CRC Press, and a graduate text, U-statistics, M-estimates and Resampling (with Snigdhansu Chatterjee), to be published by Hindustan Book Agency.


An Introduction to Random Matrices

An Introduction to Random Matrices

Author: Greg W. Anderson

Publisher: Cambridge University Press

Published: 2010

Total Pages: 507

ISBN-13: 0521194520

DOWNLOAD EBOOK

A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.


Random Matrices and Non-Commutative Probability

Random Matrices and Non-Commutative Probability

Author: Arup Bose

Publisher: CRC Press

Published: 2021-10-26

Total Pages: 420

ISBN-13: 1000458822

DOWNLOAD EBOOK

This is an introductory book on Non-Commutative Probability or Free Probability and Large Dimensional Random Matrices. Basic concepts of free probability are introduced by analogy with classical probability in a lucid and quick manner. It then develops the results on the convergence of large dimensional random matrices, with a special focus on the interesting connections to free probability. The book assumes almost no prerequisite for the most part. However, familiarity with the basic convergence concepts in probability and a bit of mathematical maturity will be helpful. Combinatorial properties of non-crossing partitions, including the Möbius function play a central role in introducing free probability. Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants. Free cumulants are introduced through the Möbius function. Free product probability spaces are constructed using free cumulants. Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed. Convergence of the empirical spectral distribution is discussed for symmetric matrices. Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices. Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices. Exercises, at advanced undergraduate and graduate level, are provided in each chapter.


Special Matrices of Mathematical Physics

Special Matrices of Mathematical Physics

Author: Ruben Aldrovandi

Publisher: World Scientific

Published: 2001

Total Pages: 344

ISBN-13: 9789812799838

DOWNLOAD EBOOK

Ch. 1. Some fundamental notions. 1.1. Definitions. 1.2. Components of a matrix. 1.3. Matrix functions. 1.4. Normal matrices -- ch. 2. Evolving systems -- ch. 3. Markov chains. 3.1. Non-negative matrices. 3.2. General properties -- ch. 4. Glass transition -- ch. 5. The Kerner model. 5.1. A simple example: Se-As glass -- ch. 6. Formal developments. 6.1. Spectral aspects. 6.2. Reducibility and regularity. 6.3. Projectors and asymptotics. 6.4. Continuum time -- ch. 7. Equilibrium, dissipation and ergodicity. 7.1. Recurrence, transience and periodicity. 7.2. Detailed balancing and reversibility. 7.3. Ergodicity -- ch. 8. Prelude -- ch. 9. Definition and main properties. 9.1. Bases. 9.2. Double Fourier transform. 9.3. Random walks -- ch. 10. Discrete quantum mechanics. 10.1. Introduction. 10.2. Weyl-Heisenberg groups. 10.3. Weyl-Wigner transformations. 10.4. Braiding and quantum groups -- ch. 11. Quantum symplectic structure. 11.1. Matrix differential geometry. 11.2. The symplectic form. 11.3. The quantum fabric -- ch. 12. An organizing tool -- ch. 13. Bell polynomials. 13.1. Definition and elementary properties. 13.2. The matrix representation. 13.3. The Lagrange inversion formula. 13.4. Developments -- ch. 14. Determinants and traces. 14.1. Introduction. 14.2. Symmetric functions. 14.3. Polynomials. 14.4. Characteristic polynomials. 14.5. Lie algebras invariants -- ch. 15. Projectors and iterates. 15.1. Projectors, revisited. 15.2. Continuous iterates -- ch. 16. Gases: real and ideal. 16.1. Microcanonical ensemble. 16.2. The canonical ensemble. 16.3. The grand canonical ensemble. 16.4. Braid statistics. 16.5. Condensation theories. 16.6. The Fredholm formalism.


Large Covariance and Autocovariance Matrices

Large Covariance and Autocovariance Matrices

Author: Arup Bose

Publisher: CRC Press

Published: 2018-07-03

Total Pages: 359

ISBN-13: 1351398156

DOWNLOAD EBOOK

Large Covariance and Autocovariance Matrices brings together a collection of recent results on sample covariance and autocovariance matrices in high-dimensional models and novel ideas on how to use them for statistical inference in one or more high-dimensional time series models. The prerequisites include knowledge of elementary multivariate analysis, basic time series analysis and basic results in stochastic convergence. Part I is on different methods of estimation of large covariance matrices and auto-covariance matrices and properties of these estimators. Part II covers the relevant material on random matrix theory and non-commutative probability. Part III provides results on limit spectra and asymptotic normality of traces of symmetric matrix polynomial functions of sample auto-covariance matrices in high-dimensional linear time series models. These are used to develop graphical and significance tests for different hypotheses involving one or more independent high-dimensional linear time series. The book should be of interest to people in econometrics and statistics (large covariance matrices and high-dimensional time series), mathematics (random matrices and free probability) and computer science (wireless communication). Parts of it can be used in post-graduate courses on high-dimensional statistical inference, high-dimensional random matrices and high-dimensional time series models. It should be particularly attractive to researchers developing statistical methods in high-dimensional time series models. Arup Bose is a professor at the Indian Statistical Institute, Kolkata, India. He is a distinguished researcher in mathematical statistics and has been working in high-dimensional random matrices for the last fifteen years. He has been editor of Sankhyā for several years and has been on the editorial board of several other journals. He is a Fellow of the Institute of Mathematical Statistics, USA and all three national science academies of India, as well as the recipient of the S.S. Bhatnagar Award and the C.R. Rao Award. His first book Patterned Random Matrices was also published by Chapman & Hall. He has a forthcoming graduate text U-statistics, M-estimates and Resampling (with Snigdhansu Chatterjee) to be published by Hindustan Book Agency. Monika Bhattacharjee is a post-doctoral fellow at the Informatics Institute, University of Florida. After graduating from St. Xavier's College, Kolkata, she obtained her master’s in 2012 and PhD in 2016 from the Indian Statistical Institute. Her thesis in high-dimensional covariance and auto-covariance matrices, written under the supervision of Dr. Bose, has received high acclaim.


A Mathematical Introduction to Compressive Sensing

A Mathematical Introduction to Compressive Sensing

Author: Simon Foucart

Publisher: Springer Science & Business Media

Published: 2013-08-13

Total Pages: 634

ISBN-13: 0817649484

DOWNLOAD EBOOK

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.


A First Course in Random Matrix Theory

A First Course in Random Matrix Theory

Author: Marc Potters

Publisher: Cambridge University Press

Published: 2020-12-03

Total Pages: 371

ISBN-13: 1108488080

DOWNLOAD EBOOK

An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.