Since their introduction in 1972, generalized linear models (GLMs) have proven useful in the generalization of classical normal models. Presenting methods for fitting GLMs with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including combining information over trials (meta-analysis), analysis of frailty models for survival data, genetic epidemiology, and analysis of spatial and temporal models with correlated errors. Written by pioneering authorities in the field, this reference provides an introduction to various theories and examines likelihood inference and GLMs. The authors show how to extend the class of GLMs while retaining as much simplicity as possible. By maximizing and deriving other quantities from h-likelihood, they also demonstrate how to use a single algorithm for all members of the class, resulting in a faster algorithm as compared to existing alternatives. Complementing theory with examples, many of which can be run by using the code supplied on the accompanying CD, this book is beneficial to statisticians and researchers involved in the above applications as well as quality-improvement experiments and missing-data analysis.
The theory of probability is a powerful tool that helps electrical and computer engineers to explain, model, analyze, and design the technology they develop. The text begins at the advanced undergraduate level, assuming only a modest knowledge of probability, and progresses through more complex topics mastered at graduate level. The first five chapters cover the basics of probability and both discrete and continuous random variables. The later chapters have a more specialized coverage, including random vectors, Gaussian random vectors, random processes, Markov Chains, and convergence. Describing tools and results that are used extensively in the field, this is more than a textbook; it is also a reference for researchers working in communications, signal processing, and computer network traffic analysis. With over 300 worked examples, some 800 homework problems, and sections for exam preparation, this is an essential companion for advanced undergraduate and graduate students. Further resources for this title, including solutions (for Instructors only), are available online at www.cambridge.org/9780521864701.
The following notes grew out oflectures held during the DMV-Seminar on Random Media in November 1999 at the Mathematics Research Institute of Oberwolfach, and in February-March 2000 at the Ecole Normale Superieure in Paris. In both places the atmosphere was very friendly and stimulating. The positive response of the audience was encouragement enough to write up these notes. I hope they will carryover the enjoyment of the live lectures. I whole heartedly wish to thank Profs. Matthias Kreck and Jean-Franc;ois Le Gall who were respon sible for these two very enjoyable visits, Laurent Miclo for his comments on an earlier version of these notes, and last but not least Erwin Bolthausen who was my accomplice during the DMV-Seminar. A Brief Introduction The main theme of this series of lectures are "Random motions in random me dia". The subject gathers a variety of probabilistic models often originated from physical sciences such as solid state physics, physical chemistry, oceanography, biophysics . . . , in which typically some diffusion mechanism takes place in an inho mogeneous medium. Randomness appears at two levels. It comes in the description of the motion of the particle diffusing in the medium, this is a rather traditional point of view for probability theory; but it also comes in the very description of the medium in which the diffusion takes place.
This is the first systematic exposition of random sets theory since Matheron (1975), with full proofs, exhaustive bibliographies and literature notes Interdisciplinary connections and applications of random sets are emphasized throughout the book An extensive bibliography in the book is available on the Web at http://liinwww.ira.uka.de/bibliography/math/random.closed.sets.html, and is accompanied by a search engine
This book provides an introduction to the asymptotic theory of random summation, combining a strict exposition of the foundations of this theory and recent results. It also includes a description of its applications to solving practical problems in hardware and software reliability, insurance, finance, and more. The authors show how practice interacts with theory, and how new mathematical formulations of problems appear and develop. Attention is mainly focused on transfer theorems, description of the classes of limit laws, and criteria for convergence of distributions of sums for a random number of random variables. Theoretical background is given for the choice of approximations for the distribution of stock prices or surplus processes. General mathematical theory of reliability growth of modified systems, including software, is presented. Special sections deal with doubling with repair, rarefaction of renewal processes, limit theorems for supercritical Galton-Watson processes, information properties of probability distributions, and asymptotic behavior of doubly stochastic Poisson processes. Random Summation: Limit Theorems and Applications will be of use to specialists and students in probability theory, mathematical statistics, and stochastic processes, as well as to financial mathematicians, actuaries, and to engineers desiring to improve probability models for solving practical problems and for finding new approaches to the construction of mathematical models.
Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees.
The book is devoted to the structural analysis of vector and random (or both) valued countably additive measures, and used for integral representations of random fields. The spaces can be Banach or Frechet types. Several stationary aspects and related processes are analyzed whilst numerous new results are included and many research avenues are opened up.
The theory and applications of random dynamical systems (RDS) are at the cutting edge of research in mathematics and economics, particularly in modeling the long-run evolution of economic systems subject to exogenous random shocks. Despite this interest, there are no books available that solely focus on RDS in finance and economics. Exploring this