Ramanujan 125

Ramanujan 125

Author: Ae Ja Yee,

Publisher: American Mathematical Soc.

Published: 2014-10-14

Total Pages: 186

ISBN-13: 1470410788

DOWNLOAD EBOOK

This volume contains the proceedings of an international conference to commemorate the 125th anniversary of Ramanujan's birth, held from November 5-7, 2012, at the University of Florida, Gainesville, Florida. Srinivasa Ramanujan was India's most famous mathematician. This volume contains research and survey papers describing recent and current developments in the areas of mathematics influenced by Ramanujan. The topics covered include modular forms, mock theta functions and harmonic Maass forms, continued fractions, partition inequalities, -series, representations of affine Lie algebras and partition identities, highly composite numbers, analytic number theory and quadratic forms.


Ramanujan

Ramanujan

Author: Srinivasa Ramanujan Aiyangar

Publisher: American Mathematical Soc.

Published: 1995-09-07

Total Pages: 366

ISBN-13: 9780821891254

DOWNLOAD EBOOK

The letters that Ramanujan wrote to G. H. Hardy on January 16 and February 27, 1913, are two of the most famous letters in the history of mathematics. These and other letters introduced Ramanujan and his remarkable theorems to the world and stimulated much research, especially in the 1920s and 1930s. This book brings together many letters to, from, and about Ramanujan. The letters came from the National Archives in Delhi, the Archives in the State of Tamil Nadu, and a variety of other sources. Helping to orient the reader is the extensive commentary, both mathematical and cultural, by Berndt and Rankin; in particular, they discuss in detail the history, up to the present day, of each mathematical result in the letters. Containing many letters that have never been published before, this book will appeal to those interested in Ramanujan's mathematics as well as those wanting to learn more about the personal side of his life. Ramanujan: Letters and Commentary was selected for the CHOICE list of Outstanding Academic Books for 1996.


My Mathematical Universe: People, Personalities, And The Profession

My Mathematical Universe: People, Personalities, And The Profession

Author: Krishnaswami Alladi

Publisher: World Scientific

Published: 2022-11-15

Total Pages: 770

ISBN-13: 9811263078

DOWNLOAD EBOOK

This is an autobiography and an exposition on the contributions and personalities of many of the leading researchers in mathematics and physics with whom Dr Krishna Alladi, Professor of Mathematics at the University of Florida, has had personal interaction with for over six decades. Discussions of various aspects of the physics and mathematics academic professions are included.Part I begins with the author's unusual and frequent introductions as a young boy to scientific luminaries like Nobel Laureates Niels Bohr, Murray Gell-Mann, and Richard Feynman, in the company of his father, the scientist Alladi Ramakrishnan. Also in Part I is an exciting account of how the author started his research investigations in number theory as an undergraduate, and how contact and collaboration with the great Paul Erdős as a student influenced him in his career.In-depth views of the Institute for Advanced Study, Princeton, and several major American Universities are given, and fascinating descriptions of the work and personalities of some Field Medalists and eminent mathematicians are provided.Part II deals with the author's tenure at the University of Florida where he initiated several programs as Mathematics Chair for a decade, and how he has served the profession in various capacities, most notably as Chair of the SASTRA Ramanujan Prize Committee and Editor-in-Chief of The Ramanujan Journal.The book would appeal to academicians and the general public, since the author has blended academic and scientific discussions at a non-technical level with descriptions of destinations in his international travels for work and pleasure. The reader is invited to dig as deep as desired and is guaranteed to be treated to whimsical stories and personal peeks at some of the great luminaries of the twentieth and twenty-first centuries.


Ramanujan's Lost Notebook

Ramanujan's Lost Notebook

Author: George E. Andrews

Publisher: Springer Science & Business Media

Published: 2005-12-06

Total Pages: 437

ISBN-13: 038728124X

DOWNLOAD EBOOK

In the library at Trinity College, Cambridge in 1976, George Andrews of Pennsylvania State University discovered a sheaf of pages in the handwriting of Srinivasa Ramanujan. Soon designated as "Ramanujan’s Lost Notebook," it contains considerable material on mock theta functions and undoubtedly dates from the last year of Ramanujan’s life. In this book, the notebook is presented with additional material and expert commentary.


Lattice Path Combinatorics and Applications

Lattice Path Combinatorics and Applications

Author: George E. Andrews

Publisher: Springer

Published: 2019-03-02

Total Pages: 443

ISBN-13: 3030111024

DOWNLOAD EBOOK

The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takács. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; “The 8th Conference on Lattice Path Combinatorics and Applications” provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.


Number Theory in the Spirit of Ramanujan

Number Theory in the Spirit of Ramanujan

Author: Bruce C. Berndt

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 210

ISBN-13: 0821841785

DOWNLOAD EBOOK

Ramanujan is recognized as one of the great number theorists of the twentieth century. Here now is the first book to provide an introduction to his work in number theory. Most of Ramanujan's work in number theory arose out of $q$-series and theta functions. This book provides an introduction to these two important subjects and to some of the topics in number theory that are inextricably intertwined with them, including the theory of partitions, sums of squares and triangular numbers, and the Ramanujan tau function. The majority of the results discussed here are originally due to Ramanujan or were rediscovered by him. Ramanujan did not leave us proofs of the thousands of theorems he recorded in his notebooks, and so it cannot be claimed that many of the proofs given in this book are those found by Ramanujan. However, they are all in the spirit of his mathematics. The subjects examined in this book have a rich history dating back to Euler and Jacobi, and they continue to be focal points of contemporary mathematical research. Therefore, at the end of each of the seven chapters, Berndt discusses the results established in the chapter and places them in both historical and contemporary contexts. The book is suitable for advanced undergraduates and beginning graduate students interested in number theory.


Ramanujan's Place in the World of Mathematics

Ramanujan's Place in the World of Mathematics

Author: Krishnaswami Alladi

Publisher: Springer Nature

Published: 2021-09-17

Total Pages: 265

ISBN-13: 9811562415

DOWNLOAD EBOOK

The First Edition of the book is a collection of articles, all by the author, on the Indian mathematical genius Srinivasa Ramanujan as well as on some of the greatest mathematicians in history whose life and works have things in common with Ramanujan. It presents a unique comparative study of Ramanujan’s spectacular discoveries and remarkable life with the monumental contributions of various mathematical luminaries, some of whom, like Ramanujan, overcame great difficulties in life. Also, among the articles are reviews of three important books on Ramanujan’s mathematics and life. In addition, some aspects of Ramanujan’s contributions, such as his remarkable formulae for the number pi, his path-breaking work in the theory of partitions, and his fundamental observations on quadratic forms, are discussed. Finally, the book describes various current efforts to ensure that the legacy of Ramanujan will be preserved and continue to thrive in the future. This Second Edition is an expanded version of the first with six more articles by the author. Of note is the inclusion of a detailed review of the movie The Man Who Knew Infinity, a description of the fundamental work of the SASTRA Ramanujan Prize Winners, and an account of the Royal Society Conference to honour Ramanujan’s legacy on the centenary of his election as FRS.


Ramanujan's Place in the World of Mathematics

Ramanujan's Place in the World of Mathematics

Author: Krishnaswami Alladi

Publisher: Springer Science & Business Media

Published: 2012-10-30

Total Pages: 179

ISBN-13: 813220767X

DOWNLOAD EBOOK

This book is a collection of articles, all by the author, on the Indian mathematical genius Srinivasa Ramanujan as well as on some of the greatest mathematicians throughout the history whose life and works have things in common with Ramanujan. It presents a unique comparative study of Ramanujan’s spectacular discoveries and remarkable life and of the monumental contributions of various mathematical luminaries, some of whom, like Ramanujan, overcame great difficulties in life. In the book, some aspects of Ramanujan’s contributions, such as his remarkable formulae for the number pi, his pathbreaking work in the theory of partitions, and his fundamental observations on quadratic forms, are discussed. Finally, the book describes various current efforts to ensure that the legacy of Ramanujan will be preserved and continue to thrive in the future. Thus the book is an enlightening study of Ramanujan as a mathematician and a human being.


Ramanujan’s Notebooks

Ramanujan’s Notebooks

Author: Bruce C. Berndt

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 459

ISBN-13: 1461208793

DOWNLOAD EBOOK

During the years 1903-1914, Ramanujan worked in almost complete isolation in India. During this time, he recorded most of his mathematical discoveries without proofs in notebooks. Although many of his results were already found in the literature, most were not. Almost a decade after Ramanujan's death in 1920, G.N. Watson and B.M. Wilson began to edit Ramanujan's notebooks, but they never completed the task. A photostat edition, with no editing, was published by the Tata Institute of Fundamental Research in Bombay in 1957. This book is the fourth of five volumes devoted to the editing of Ramanujan's notebooks. Parts I, II, and III, published in 1985, 1989, and 1991, contain accounts of Chapters 1-21 in Ramanujan's second notebook as well as a description of his quarterly reports. This is the first of two volumes devoted to proving the results found in the unorganized portions of the second notebook and in the third notebook. The author also proves those results in the first notebook that are not found in the second or third notebooks. For those results that are known, references in the literature are provided. Otherwise, complete proofs are given. Over 1/2 of the results in the notebooks are new. Many of them are so startling and different that there are no results akin to them in the literature.


Topics And Methods In Q-series

Topics And Methods In Q-series

Author: James Mc Laughlin

Publisher: World Scientific

Published: 2017-09-22

Total Pages: 401

ISBN-13: 9813223383

DOWNLOAD EBOOK

The book provides a comprehensive introduction to the many aspects of the subject of basic hypergeometric series. The book essentially assumes no prior knowledge but eventually provides a comprehensive introduction to many important topics. After developing a treatment of historically important topics such as the q-binomial theorem, Heine's transformation, the Jacobi triple product identity, Ramanujan's 1-psi-1 summation formula, Bailey's 6-psi-6 summation formula and the Rogers-Fine identity, the book goes on to delve more deeply into important topics such as Bailey- and WP-Bailey pairs and chains, q-continued fractions, and mock theta functions. There are also chapters on other topics such as Lambert series and combinatorial proofs of basic hypergeometric identities.The book could serve as a textbook for the subject at the graduate level and as a textbook for a topic course at the undergraduate level (earlier chapters). It could also serve as a reference work for researchers in the area.