An accessible overview of radiogenic isotopes, dataset evaluation and real-world applications for advanced undergraduate students and industry professionals.
This book provides a comprehensive introduction to radiogenic and stable isotope geochemistry. Beginning with a brief overview of nuclear physics and nuclear origins, it then reviews radioactive decay schemes and their use in geochronology. A following chapter covers the closely related techniques such as fission-track and carbon-14 dating. Subsequent chapters cover nucleosynthetic anomalies in meteorites and early solar system chronology and the use of radiogenic isotopes in understanding the evolution of the Earth’s mantle, crust, and oceans. Attention then turns to stable isotopes and after reviewing the basic principles involved, the book explores their use in topics as diverse as mantle evolution, archeology and paleontology, ore formation, and, particularly, paleoclimatology. A following chapter explores recent developments including unconventional stable isotopes, mass-independent fractionation, and isotopic ‘clumping’. The final chapter reviews the isotopic variation in the noble gases, which result from both radioactive decay and chemical fractionations.
This textbook is a complete rewrite, and expansion of Hugh Rollinson's highly successful 1993 book Using Geochemical Data: Evaluation, Presentation, Interpretation. Rollinson and Pease's new book covers the explosion in geochemical thinking over the past three decades, as new instruments and techniques have come online. It provides a comprehensive overview of how modern geochemical data are used in the understanding of geological and petrological processes. It covers major element, trace element, and radiogenic and stable isotope geochemistry. It explains the potential of many geochemical techniques, provides examples of their application, and emphasizes how to interpret the resulting data. Additional topics covered include the critical statistical analysis of geochemical data, current geochemical techniques, effective display of geochemical data, and the application of data in problem solving and identifying petrogenetic processes within a geological context. It will be invaluable for all graduate students, researchers, and professionals using geochemical techniques.
This book takes the reader through the complete weathering cycle, from the continents to the oceans, from the perspective of modern radiogenic isotope geochemistry. Topics include surface weathering, fluvial processes, environmental pollution, oceanography and paleoceanography, sedimentary mineral diagenesis and radiometric dating, thus bridging the gap between processes acting on the Earth today and the geological record. Extensive use is made of carefully selected case studies, both pioneering and state-of-the-art. This book enables the reader to critically assess previous work from the literature as well as encouraging already established researchers to apply the most modern isotopic approaches to their particular field of study.
Applications of radioactive and stable isotopes have revolutionized our understanding of the Earth and near-earth surface processes. The utility of the isotopes are ever-increasing and our sole focus is to bring out the applications of these isotopes as tracers and chronometers to a wider audience so that they can be used as powerful tools to solve environmental problems. New developments in this field remain mostly in peer-reviewed journal articles and hence our goal is to synthesize these findings for easy reference for students, faculty, regulators in governmental and non-governmental agencies, and environmental companies. While this volume maintains its rigor in terms of its depth of knowledge and quantitative information, it contains the breadth needed for wide variety problems and applications in the environmental sciences. This volume presents all of the newer and older applications of isotopes pertaining to the environmental problems in one place that is readily accessible to readers. This book not only has the depth and rigor that is needed for academia, but it has the breadth and case studies to illustrate the utility of the isotopes in a wide variety of environments (atmosphere, oceans, lakes, rivers and streams, terrestrial environments, and sub-surface environments) and serves a large audience, from students and researchers, regulators in federal, state and local governments, and environmental companies.
This book provides a comprehensive introduction to the field of geochemistry. The book first lays out the ‘geochemical toolbox’: the basic principles and techniques of modern geochemistry, beginning with a review of thermodynamics and kinetics as they apply to the Earth and its environs. These basic concepts are then applied to understanding processes in aqueous systems and the behavior of trace elements in magmatic systems. Subsequent chapters introduce radiogenic and stable isotope geochemistry and illustrate their application to such diverse topics as determining geologic time, ancient climates, and the diets of prehistoric peoples. The focus then broadens to the formation of the solar system, the Earth, and the elements themselves. Then the composition of the Earth itself becomes the topic, examining the composition of the core, the mantle, and the crust and exploring how this structure originated. A final chapter covers organic chemistry, including the origin of fossil fuels and the carbon cycle’s role in controlling Earth’s climate, both in the geologic past and the rapidly changing present. Geochemistry is essential reading for all earth science students, as well as for researchers and applied scientists who require an introduction to the essential theory of geochemistry, and a survey of its applications in the earth and environmental sciences. Additional resources can be found at: www.wiley.com/go/white/geochemistry
The development of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) makes it possible to precisely measure non-traditional stable isotopes. This volume reviews the current status of non-traditional isotope geochemistry from analytical, theoretical, and experimental approaches to analysis of natural samples. In particular, important applications to cosmochemistry, high-temperature geochemistry, low-temperature geochemistry, and geobiology are discussed. This volume provides the most comprehensive review on non-traditional isotope geochemistry for students and researchers who are interested in both the theory and applications of non-traditional stable isotope geochemistry.