In print since 1972, this seventh edition of Radiobiology for the Radiologist is the most extensively revised to date. It consists of two sections, one for those studying or practicing diagnostic radiolo, nuclear medicine and radiation oncology; the other for those engaged in the study or clinical practice of radiation oncology--a new chapter, on radiologic terrorism, is specifically for those in the radiation sciences who would manage exposed individuals in the event of a terrorist event. The 17 chapters in Section I represent a general introduction to radiation biology and a complete, self-contained course especially for residents in diagnostic radiology and nuclear medicine that follows the Syllabus in Radiation Biology of the RSNA. The 11 chapters in Section II address more in-depth topics in radiation oncology, such as cancer biology, retreatment after radiotherapy, chemotherapeutic agents and hyperthermia. Now in full color, this lavishly illustrated new edition is replete with tables and figures that underscore essential concepts. Each chapter concludes with a "summary of pertinent conclusions" to facilitate quick review and help readers retain important information.
Expand your understanding of the physics and practical clinical applications of advanced radiation therapy technologies with Khan's The Physics of Radiation Therapy, 5th edition, the book that set the standard in the field. This classic full-color text helps the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—develop a thorough understanding of 3D conformal radiotherapy (3D-CRT), stereotactic radiosurgery (SRS), high dose-rate remote afterloaders (HDR), intensity modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), Volumetric Modulated Arc Therapy (VMAT), and proton beam therapy, as well as the physical concepts underlying treatment planning, treatment delivery, and dosimetry. In preparing this new Fifth Edition, Dr. Kahn and new co-author Dr. John Gibbons made chapter-by-chapter revisions in the light of the latest developments in the field, adding new discussions, a new chapter, and new color illustrations throughout. Now even more precise and relevant, this edition is ideal as a reference book for practitioners, a textbook for students, and a constant companion for those preparing for their board exams. Features Stay on top of the latest advances in the field with new sections and/or discussions of Image Guided Radiation Therapy (IGRT), Volumetric Modulated Arc Therapy (VMAT), and the Failure Mode Event Analysis (FMEA) approach to quality assurance. Deepen your knowledge of Stereotactic Body Radiotherapy (SBRT) through a completely new chapter that covers SBRT in greater detail. Expand your visual understanding with new full color illustrations that reflect current practice and depict new procedures. Access the authoritative information you need fast through the new companion website which features fully searchable text and an image bank for greater convenience in studying and teaching. This is the tablet version which does not include access to the supplemental content mentioned in the text.
This book serves as a practical guide for the use of stereotactic body radiation therapy in clinics. On the basis of more than 10 years of clinical experience with lung cancer, liver cancer and other cancers, a remarkable volume of knowledge has been accumulated. At the same time, great progress in techniques has been achieved. Various new fixing apparatuses, new respiratory regulation techniques, new dose fractionation schedules and new image-guided radiation therapy machines have been developed. This book reviews the history of those developments and reports on various types of toxicities. Review of recent clinical studies is also included. The authors were key members of the JCOG 0403 clinical trials on stereotactic body radiation therapy (SBRT) for both inoperable and operableT1N0M0 primary lung cancer. Readers will learn of the superior outcomes obtained with SBRT for lung cancer and other cancers in terms of local control and toxicities. With its practical focus, this book will benefit radiation oncologists, medical physicists, medical dosimetrists, radiation therapists and senior nurses as well as medical oncologists and surgical oncologists who are interested in radiotherapy.
This book serves as a practical guide for the use of carbon ions in cancer radiotherapy. On the basis of clinical experience with more than 7,000 patients with various types of tumors treated over a period of nearly 20 years at the National Institute of Radiological Sciences, step-by-step procedures and technological development of this modality are highlighted. The book is divided into two sections, the first covering the underlying principles of physics and biology, and the second section is a systematic review by tumor site, concentrating on the role of therapeutic techniques and the pitfalls in treatment planning. Readers will learn of the superior outcomes obtained with carbon-ion therapy for various types of tumors in terms of local control and toxicities. It is essential to understand that the carbon-ion beam is like a two-edged sword: unless it is used properly, it can increase the risk of severe injury to critical organs. In early series of dose-escalation studies, some patients experienced serious adverse effects such as skin ulcers, pneumonitis, intestinal ulcers, and bone necrosis, for which salvage surgery or hospitalization was required. To preclude such detrimental results, the adequacy of therapeutic techniques and dose fractionations was carefully examined in each case. In this way, significant improvements in treatment results have been achieved and major toxicities are no longer observed. With that knowledge, experts in relevant fields expand upon techniques for treatment delivery at each anatomical site, covering indications and optimal treatment planning. With its practical focus, this book will benefit radiation oncologists, medical physicists, medical dosimetrists, radiation therapists, and senior nurses whose work involves radiation therapy, as well as medical oncologists and others who are interested in radiation therapy.
Basic Clinical Radiobiology is a concise but comprehensive textbook setting out the essentials of the science and clinical application of radiobiology for those seeking accreditation in radiation oncology, clinical radiation physics, and radiation technology. Fully revised and updated to keep abreast of current developments in radiation biology and radiation oncology, this fifth edition continues to present in an interesting way the biological basis of radiation therapy, discussing the basic principles and significant developments that underlie the latest attempts to improve the radiotherapeutic management of cancer. This new edition is highly illustrated with attractive 2-colour presentation and now includes new chapters on stem cells, tissue response and the convergence of radiotherapy, radiobiology, and physics. It will be invaluable for FRCR (clinical oncology) and equivalent candidates, SpRs (and equivalent) in radiation oncology, practicing radiation oncologists and radiotherapists, as well as radiobiologists and radiotherapy physicists.
Photon Radiation Therapy for Skin Malignancies is a vital resource for dermatologists interested in radiation therapy, including the physics and biology behind treatment of skin cancers, as well as useful and pragmatic formulas and algorithms for evaluating and treating them. Dermatology has always been a field that overlaps multiple medical specialties and this book is no exception, with its focus on both dermatologists and radiation oncologists. It is estimated that between 2010 and 2020, the demand for radiation therapy will exceed the number of radiation oncologists practicing in the U.S. tenfold, which could profoundly affect the ability to provide patients with sufficient access to treatment. Photon Radiation Therapy for Skin Malignancies enhances the knowledge of dermatologists and radiation oncologists and presents them with the most up-to-date information regarding detection, delineation and depth determination of skin cancers, and appropriate biopsy techniques. In addition, the book also addresses radiation therapy of the skin and the skin’s reactions to radiation therapy.
The scientific and clinical foundations of Radiation Therapy are cross-disciplinary. This book endeavours to bring together the physics, the radiobiology, the main clinical aspects as well as available clinical evidence behind Radiation Therapy, presenting mutual relationships between these disciplines and their role in the advancements of radiation oncology.
This book is a comprehensive review and study aid for radiation therapists. Organized in a question-and-answer format, it present clinical features and principles of treatment. Topics include radiation therapy physics, radiobiology, treatment and simulation equipment, principles of patient care, clinical components of cancer care, and cancers of the brain, head and neck region, and respiratory, digestive, urinary, and male and female reproductive systems. It offers over 500 multiple-choice questions with detailed answers and rationales. Radiation Therapy Study Guide is a valuable resource for radiation therapists preparing for certification examinations as well as for practicing therapists in need of a review.
Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy (SBRT) is a comprehensive guide for the practicing physician and medical physicist in the management of complex intracranial and extracranial disease. It is a state-of-the-science book presenting the scientific principles, clinical background and procedures, treatment planning, and treatment delivery of SRS and SBRT for the treatment of tumors throughout the body. This unique textbook is enhanced with supplemental video tutorials inclusive to the resource. Beginning with an overview of SRS and SBRT, Part I contains insightful coverage on topics such as the evolving radiobiological principles that govern treatment, imaging, the treatment planning process, technologies and equipment used, as well as focused chapters on quality assurance, quality management, and patient safety. Part II contains the clinical application of SRS and SBRT for tumors throughout the body including those in the brain, head and neck, lung, pancreas, adrenal glands, liver, prostate, cervix, spine, and in oligometastatic disease. Each clinical chapter includes an introduction to the disease site, followed by a thorough review of all indications and exclusion criteria, in addition to the important considerations for patient selection, treatment planning and delivery, and outcome evaluation. These chapters conclude with a detailed and site-specific dose constraints table for critical structures and their suggested dose limits. International experts on the science and clinical applications of these treatments have joined together to assemble this must-have book for clinicians, physicists, and other radiation therapy practitioners. It provides a team-based approach to SRS and SBRT coupled with case-based video tutorials in disease management, making this a unique companion for the busy radiosurgical team. Key Features: Highlights the principles of radiobiology and radiation physics underlying SRS and SBRT Presents and discusses the expected patient outcomes for each indicated disease site and condition including a detailed analysis of Quality of Life (QOL) and Survival Includes information about technologies used for the treatment of SRS and SBRT Richly illustrated with over 110 color images of the equipment, process flow diagrams and procedures, treatment planning techniques and dose distributions 7 high-quality videos reviewing anatomy, staging, treatment simulation and planning, contouring, and management pearls Dose constraint tables at the end of each clinical chapter listing critical structures and their appropriate dose limits Includes access to the fully-searchable downloadable eBook