Ionizing Radiation Detectors for Medical Imaging contains tentechnical chapters, half of which are devoted to radiology and theother half to nuclear medicine. The last chapter describes thedetectors for radiotherapy and portal imaging. Each chapter addressescompletely a specific application. The emphasis is always on detectorfundamentals and detector properties. Where necessary, software andspecific applications are described in depth. This book is intended for graduate and undergraduate students inphysics and engineering who want to study medical imaging. Inaddition, scientists who are working in a specific sub-field ofmedical imaging can acquire from the book an up-to-date description ofthe state of the art in related sub-fields, within the scope ofionizing radiation detectors. Other scientists, as well as physicians, can use the book as a reference for medical imaging
Ionizing Radiation Detectors for Medical Imaging contains ten technical chapters, half of which are devoted to radiology and the other half to nuclear medicine. The last chapter describes the detectors for radiotherapy and portal imaging. Each chapter addresses completely a specific application. The emphasis is always on detector fundamentals and detector properties. Where necessary, software and specific applications are described in depth.This book is intended for graduate and undergraduate students in physics and engineering who want to study medical imaging. In addition, scientists who are working in a specific sub-field of medical imaging can acquire from the book an up-to-date description of the state of the art in related sub-fields, within the scope of ionizing radiation detectors. Other scientists, as well as physicians, can use the book as a reference for medical imaging.
The advances in semiconductor detectors, scintillators, photodetectors such as silicon photomultipliers (SiPM), and readout electronics have experienced tremendous growth in recent years in terms of basic technologies and a variety of applications. The second edition of Radiation Detection Systems presents variety of radiation detection systems, giving readers a broad view of the state-of-the-art in the design of detectors, front-end electronics, and systems offering optimized choices of the detection tools for a particular application. The new edition has been divided into two volumes. This volume on Medical Imaging, Industrial Testing, and Security Applications presents specific applications of the detection systems in medical imaging, industrial testing, and security applications. These newely developed technologies play a vital role in the detection, diagnosis, and treatment of major human diseases. Featuring contributions from leading experts and pioneers in their respective fields, this book: Describes new advances in development of detection systems based on CdZnTe (CZT) and CdTe detectors utilizing a direct conversion of radiation to electric signals Reports a recent progress in technologies and performance of SiPM used for reading the light from scintillators Explores exciting new application opportunities created by development of the cutting-edge detection technologies in X-ray spectroscopy, computed tomography (CT), bone dosimetry, and nuclear medicine (PET, SPECT) Considers the future use of photon-counting detectors in clinical CT scanners providing K-edge imaging to reduce the amount of contrast agents and ultimately offering both an anatomical and a functional information Describes, uses of radiation detection systems in security applications such as luggage scanning, dirty bomb detection, and border control With its combined coverage of new materials and innovative new system approaches, as well as a succinct overview of recent developments, this book is an invaluable tool for any engineer, professional, or student working in electronics or an associated field. Readers can refer to the other volume, Sensor Materials, Systems, Technology, and Characterization Measurements, which puts emphasis on sensor materials, detector structures, front electronics technology, and their designs and system optimization for different applications.
A must-read for anyone working in electronics in the healthcare sector This one-of-a-kind book addresses state-of-the-art integrated circuit design in the context of medical imaging of the human body. It explores new opportunities in ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine (PET, SPECT), emerging detector technologies, circuit design techniques, new materials, and innovative system approaches. Divided into four clear parts and with contributions from a panel of international experts, Medical Imaging systematically covers: X-ray imaging and computed tomography–X-ray and CT imaging principles; Active Matrix Flat Panel Imagers (AMFPI) for diagnostic medical imaging applications; photon counting and integrating readout circuits; noise coupling in digital X-ray imaging Nuclear medicine–SPECT and PET imaging principles; low-noise electronics for radiation sensors Ultrasound imaging–Electronics for diagnostic ultrasonic imaging Magnetic resonance imaging–Magnetic resonance imaging principles; MRI technology
This new edition of the methods and instrumentation used in the detection of ionizing radiation has been revised and updated to reflect recent advances. It covers modern engineering practice, provides useful design information and contains an up-to-date review of the literature.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
Pixel detectors are a particularly important class of particle and radiation detection devices. They have an extremely broad spectrum of applications, ranging from high-energy physics to the photo cameras of everyday life. This book is a general purpose introduction into the fundamental principles of pixel detector technology and semiconductor-based hybrid pixel devices. Although these devices were developed for high-energy ionizing particles and radiation beyond visible light, they are finding new applications in many other areas. This book will therefore benefit all scientists and engineers working in any laboratory involved in developing or using particle detection.
This book offers readers an overview of some of the most recent advances in the field of detectors for X-ray imaging. Coverage includes both technology and applications, with an in-depth review of the research topics from leading specialists in the field. Emphasis is on high-Z materials like CdTe, CZT and perovskites, since they offer the best implementation possibilities for direct conversion X-ray detectors. Authors discuss material challenges, detector operation physics and technology and readout integrated circuits required to detect signals processes by high-Z sensors.
Integrating aspects of engineering, application physics, and medical science, Solid-State Radiation Detectors: Technology and Applications offers a comprehensive review of new and emerging solid-state materials-based technologies for radiation detection. Each chapter is structured to address the current advantages and challenges of each material and technology presented, as well as to discuss novel research and applications. Featuring contributions from leading experts in industry and academia, this authoritative text: Covers modern semiconductors used for radiation monitoring Examines CdZnTe and CdTe technology for imaging applications including three-dimensional capability detectors Highlights interconnect technology for current pixel detectors Describes hybrid pixel detectors and their characterizations Tackles the integrated analog signal processing read-out front ends for particle detectors Considers new organic materials with direct bandgap for direct energy detection Summarizes recent developments involving lanthanum halide and cerium bromide scintillators Analyzes the potential of recent progress in the field of crystallogenesis, quantum dots, and photonics crystals toward a new concept of x- and gamma-ray detectors based on metamaterials Explores position-sensitivity photomultipliers and silicon photomultipliers for scintillation crystals Solid-State Radiation Detectors: Technology and Applications provides a valuable reference for engineers and scientists looking to enhance the performance of radiation detector technology for medical imaging and other applications.
This book will serve as the definitive source of detailed information on radiation, ionization, and detection in nuclear medicine. It opens by considering fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding. Subsequent chapters cover the full range of relevant topics, including the detection and measurement of radiation exposure (with detailed information on mathematical modelling); medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.