Quaternion Fusion Packets

Quaternion Fusion Packets

Author: Michael Aschbacher

Publisher: American Mathematical Soc.

Published: 2021-04-01

Total Pages: 444

ISBN-13: 1470456656

DOWNLOAD EBOOK

Let p p be a prime and S S a finite p p-group. A p p-fusion system on S S is a category whose objects are the subgroups of S and whose morphisms are certain injective group homomorphisms. Fusion systems are of interest in modular representation theory, algebraic topology, and local finite group theory. The book provides a characterization of the 2-fusion systems of the groups of Lie type and odd characteristic, a result analogous to the Classical Involution Theorem for groups. The theorem is the most difficult step in a two-part program. The first part of the program aims to determine a large subclass of the class of simple 2-fusion systems, while part two seeks to use the result on fusion systems to simplify the proof of the theorem classifying the finite simple groups.


On Fusion Systems of Component Type

On Fusion Systems of Component Type

Author: Michael Aschbacher

Publisher: American Mathematical Soc.

Published: 2019-02-21

Total Pages: 194

ISBN-13: 1470435209

DOWNLOAD EBOOK

This memoir begins a program to classify a large subclass of the class of simple saturated 2-fusion systems of component type. Such a classification would be of great interest in its own right, but in addition it should lead to a significant simplification of the proof of the theorem classifying the finite simple groups. Why should such a simplification be possible? Part of the answer lies in the fact that there are advantages to be gained by working with fusion systems rather than groups. In particular one can hope to avoid a proof of the B-Conjecture, a important but difficult result in finite group theory, established only with great effort.


Fusion Systems in Algebra and Topology

Fusion Systems in Algebra and Topology

Author: Michael Aschbacher

Publisher: Cambridge University Press

Published: 2011-08-25

Total Pages: 329

ISBN-13: 1107601002

DOWNLOAD EBOOK

A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. This book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians.


Arithmetic, Geometry, Cryptography, and Coding Theory 2021

Arithmetic, Geometry, Cryptography, and Coding Theory 2021

Author: Samuele Anni

Publisher: American Mathematical Society

Published: 2022-07-06

Total Pages: 198

ISBN-13: 1470467941

DOWNLOAD EBOOK

This volume contains the proceedings of the 18th International Conference on Arithmetic, Geometry, Cryptography, and Coding Theory, held (online) from May 31 to June 4, 2021. For over thirty years, the biennial international conference AGC$^2$T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers together to forge connections between arithmetic geometry and its applications to coding theory and to cryptography. The papers illustrate the fruitful interaction between abstract theory and explicit computations, covering a large range of topics, including Belyi maps, Galois representations attached to elliptic curves, reconstruction of curves from their Jacobians, isogeny graphs of abelian varieties, hypergeometric equations, and Drinfeld modules.


Advances in Inverse Problems for Partial Differential Equations

Advances in Inverse Problems for Partial Differential Equations

Author: Dinh-Liem Nguyen

Publisher: American Mathematical Society

Published: 2023-04-12

Total Pages: 218

ISBN-13: 1470469685

DOWNLOAD EBOOK

This volume contains the proceedings of two AMS Special Sessions “Recent Developments on Analysis and Computation for Inverse Problems for PDEs,” virtually held on March 13–14, 2021, and “Recent Advances in Inverse Problems for Partial Differential Equations,” virtually held on October 23–24, 2021. The papers in this volume focus on new results on numerical methods for various inverse problems arising in electrical impedance tomography, inverse scattering in radar and optics problems, reconstruction of initial conditions, control of acoustic fields, and stock price forecasting. The authors studied iterative and non-iterative approaches such as optimization-based, globally convergent, sampling, and machine learning-based methods. The volume provides an interesting source on advances in computational inverse problems for partial differential equations.


Algebra and Coding Theory

Algebra and Coding Theory

Author: A. Leroy

Publisher: American Mathematical Society

Published: 2023-05-01

Total Pages: 270

ISBN-13: 147046859X

DOWNLOAD EBOOK

This volume contains the proceedings of the Virtual Conference on Noncommutative Rings and their Applications VII, in honor of Tariq Rizvi, held from July 5–7, 2021, and the Virtual Conference on Quadratic Forms, Rings and Codes, held on July 8, 2021, both of which were hosted by the Université d'Artois, Lens, France. The articles cover topics in commutative and noncommutative algebra and applications to coding theory. In some papers, applications of Frobenius rings, the skew group rings, and iterated Ore extensions to coding theory are discussed. Other papers discuss classical topics, such as Utumi rings, Baer rings, nil and nilpotent algebras, and Brauer groups. Still other articles are devoted to various aspects of the elementwise study for rings and modules. Lastly, this volume includes papers dealing with questions in homological algebra and lattice theory. The articles in this volume show the vivacity of the research of noncommutative rings and its influence on other subjects.


Abelian Varieties and Number Theory

Abelian Varieties and Number Theory

Author: Moshe Jarden

Publisher: American Mathematical Soc.

Published: 2021-05-03

Total Pages: 200

ISBN-13: 1470452073

DOWNLOAD EBOOK

This book is a collection of articles on Abelian varieties and number theory dedicated to Gerhard Frey's 75th birthday. It contains original articles by experts in the area of arithmetic and algebraic geometry. The articles cover topics on Abelian varieties and finitely generated Galois groups, ranks of Abelian varieties and Mordell-Lang conjecture, Tate-Shafarevich group and isogeny volcanoes, endomorphisms of superelliptic Jacobians, obstructions to local-global principles over semi-global fields, Drinfeld modular varieties, representations of etale fundamental groups and specialization of algebraic cycles, Deuring's theory of constant reductions, etc. The book will be a valuable resource to graduate students and experts working on Abelian varieties and related areas.


Geometry at the Frontier: Symmetries and Moduli Spaces of Algebraic Varieties

Geometry at the Frontier: Symmetries and Moduli Spaces of Algebraic Varieties

Author: Paola Comparin

Publisher: American Mathematical Soc.

Published: 2021-04-23

Total Pages: 282

ISBN-13: 1470453274

DOWNLOAD EBOOK

Articles in this volume are based on lectures given at three conferences on Geometry at the Frontier, held at the Universidad de la Frontera, Pucón, Chile in 2016, 2017, and 2018. The papers cover recent developments on the theory of algebraic varieties—in particular, of their automorphism groups and moduli spaces. They will be of interest to anyone working in the area, as well as young mathematicians and students interested in complex and algebraic geometry.


Arithmetic, Geometry, Cryptography and Coding Theory

Arithmetic, Geometry, Cryptography and Coding Theory

Author: Stéphane Ballet

Publisher: American Mathematical Soc.

Published: 2021-07-01

Total Pages: 303

ISBN-13: 1470454262

DOWNLOAD EBOOK

This volume contains the proceedings of the 17th International Conference on Arithmetic, Geometry, Cryptography and Coding Theory (AGC2T-17), held from June 10–14, 2019, at the Centre International de Rencontres Mathématiques in Marseille, France. The conference was dedicated to the memory of Gilles Lachaud, one of the founding fathers of the AGC2T series. Since the first meeting in 1987 the biennial AGC2T meetings have brought together the leading experts on arithmetic and algebraic geometry, and the connections to coding theory, cryptography, and algorithmic complexity. This volume highlights important new developments in the field.