The aim of this book is to offer to the next generation of young researchers a broad and largely self-contained introduction to the physics of heavy ion collisions and the quark-gluon plasma, providing material beyond that normally found in the available textbooks. For each of the main aspects - QCD thermodynamics and global features of the QGP, collision hydrodynamics, electromagnetic probes, jet and quarkonium production, color glass condensate, and the gravity connection - the present volume provides extensive and pedagogical lectures, surveying the present status of both theory and experiment. A particular feature of this volume is that all lectures have been written with the active assistance of selected students present at the course in order to ensure the adequate level and coverage for the intended readership.
Quark-Gluon Plasma introduces the primordial matter, composed of two types of elementary particles, created at the time of the Big Bang. During the evolution of the universe, Quark-Gluon Plasma (QGP) undergoes a transition to hadronic matter governed by quantum chromodynamics, the law of strong interactions. After an introduction to gauge theories, various aspects of quantum chromodynamic phase transitions are illustrated in a self-contained manner. The cosmological approach and renormalization group are discussed, as well as the cosmological and astrophysical implications of QGP, on the basis of Einstein's equations. Recent developments towards the formation of QGP in ultrarelativistic heavy ion collisions are also presented in detail. This text is suitable as an introduction for graduate students, as well as providing a valuable reference for researchers already working in this and related fields. It includes eight appendices and over a hundred exercises.
Annotation. Text reviews the major topics in Quark-Gluon Plasma, including: the QCD phase diagram, the transition temperature, equation of state, heavy quark free energies, and thermal modifications of hadron properties. Includes index, references, and appendix. For researchers and practitioners.
The purpose of this volume is to trace the development of the theoretical understanding of quark-gluon plasma, both in terms of the equation of state and thermal correlation functions and in terms of its manifestation in high energy nuclear collisions. Who among us has not wondered how tall a mountain is on a neutron star, what happens when matter is heated and compressed to higher and higher densities, what happens when an object falls into a black hole, or what happened eons ago in the early universe? The study of quark-gluon plasma is related in one way or another to these and other thought provoking questions. Oftentimes the most eloquent exposition is given in the original papers. To this end a selection is made of what are the most important pioneering papers in this field. The early 1950s was an era when high energy multiparticle production in cosmic ray interactions attracted the attention of some of the brightest minds in physics, and so it should be no surprise that the first reprinted papers deal with the introduction of statistical models of particle production. The quark model arose in the 1960s, while QCD as such was recognized as the theory of the strong interactions in the 1970's. The behavior of matter at high temperatures and supranuclear densities became of wide interest in the nuclear and particle physics communities starting in the 1970s, which is when the concept of quark-gluon plasma became established. The history of the field has been traced up to the early 1990s. There are three reasons for stopping at that point in time. First, most of the key theoretical concepts and formalisms arose before 1993, although many of them continue to be developed today and hopefully well into the future. Second, papers written after 1992 are much more readily available than those writen before due to the advent of the World Wide Web and its electronic preprint databases and journals. Finally, in making this collection of reprints available as hardcopy one is limited in the number of pages, and some papers in the present selection should have been deleted in order to make room for post-1993 papers. For the same reason the subject focus must of necessity be limited, which means that in this reprint collection two wide subject areas are not addressed: the behavior of nuclear matter under extreme conditions is not reported, nor is quark matter in neutron stars. The broad categories into which the material has been placed, reflect the diverse studies of quark-gluon plasma and its manifestation. They are: phase-space models of particle production, perturbative QCD plasma, lattice gauge theory, fluid dynamics and flow, strangeness, heavy flavor (charm), electromagnetic signals, parton cascade and minijets, parton energy loss and jet quenching, Hanbury Brown--Twiss (HBT) interferometry, disoriented chiral condensates, phase transition dynamics and cosmology, and color superconductivity. Each chapter is prefaced by an introduction, which contains a list of significant papers which is more complete than the reprinted papers, though by no means exhaustive. It also contains citations to most relevant papers published up to the date of completion of this volume (fall 2002). It is hoped that the short reviews will help bring the reader up to date on the latest developments. The selection of papers cited in each chapter, and in particular the ones selected for reprinting, is solely the responsibility of the Editors. It is based on their best judgement and experience in this field dating back to the mid-1970s. In order to be reprinted a paper must have been pioneering in the sense of originality and impact on the field. Generally they have been cited over a hundred times by other papers published in refereed journals. The final selection was reviewed and discussed among the Editors repeatedly. Just because a paper is not included does not mean they do not know of it or do not have a high regard for it. All of the papers cited or reprinted are original research contributions. There are three other types of publications listed. The first is a compilation of books. The second is a list of reviews, many of which contain a significant amount of original material. The third is a list of the proceedings of the series of Quark Matter meetings, the primary series of international conferences in this field that is attended by both theorists and experimentalists.
This is a review volume containing articles written by experts on current theoretical topics in the subject of Quark-Gluon Plasma created in heavy-ion collisions at high energy. It is the fourth volume in the series with the same title sequenced numerically. The articles are written in a pedagogical style so that they can be helpful to a wide range of researchers from graduate students to mature physicists who have not worked previously on the subject. A reader should be able to learn from the reviews without having extensive knowledge of the background literature.
Written primarily for researchers and graduate students who are new in this emerging field, this book develops the necessary tools so that readers can follow the latest advances in this subject. Readers are first guided to examine the basic informations on nucleon-nucleon collisions and the use of the nucleus as an arena to study the interaction of one nucleon with another. A good survey of the relation between nucleon-nucleon and nucleus-nucleus collisions provides the proper comparison to study phenomena involving the more exotic quark-gluon plasma. Properties of the quark-gluon plasma and signatures for its detection are discussed to aid future searches and exploration for this exotic matter. Recent experimental findings are summarised.
This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma -- announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gaździcki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and to the rise of the experimental relativistic heavy ion collision program. These parts contain previously unpublished material authored by Hagedorn and Rafelski: conference retrospectives, research notes, workshop reports, in some instances abbreviated to avoid duplication of material, and rounded off with the editor's explanatory notes. About the editor: Johann Rafelski is a theoretical physicist working at The University of Arizona in Tucson, USA. Bor n in 1950 in Krakow, Poland, he received his Ph.D. with Walter Greiner in Frankfurt, Germany in 1973. Rafelski arrived at CERN in 1977, where in a joint effort with Hagedorn he contributed greatly to the establishment of the relativistic heavy ion collision, and quark-gluon plasma research fields. Moving on, with stops in Frankfurt and Cape Town, to Arizona, he invented and developed the strangeness quark flavor as the signature of quark-gluon plasma.
This book gives an introduction to main ideas used in the physics of ultra-relativistic heavy-ion collisions. The links between basic theoretical concepts (discussed gradually from the elementary to more advanced level) and the results of experiments are outlined, so that experimentalists may learn more about the foundations of the models used by them to fit and interpret the data, while theoreticians may learn more about how different theoretical ideas are used in practical applications. The main task of the book is to collect the available information and establish a uniform picture of ultra-relativistic heavy-ion collisions. The properties of hot and dense matter implied by this picture are discussed comprehensively. In particular, the issues concerning the formation of the quark-gluon plasma in present and future heavy-ion experiments are addressed.
This is a sequel to the review volume Quark-Gluon Plasma. There are 13 articles contributed by leading investigators in the field, covering a wide range of topics about the theoretical approach to the subject. These contributions are timely reviews of nearly all the actively pursued problems, written in a pedagogical style suitable for beginners as well as experienced researchers.