Quantum-well lasers offer the promise of lightning-fast data communications - 10-to-100 times faster than broadband. While the architecture for these devices already exists, they suffer from material packaging problems. This book addresses this critical issue. It offers screening and packaging techniques useful for researchers.
This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc.
Quantum-well lasers offer the promise of lightning-fast data communications - 10-to-100 times faster than broadband. While the architecture for these devices already exists, they suffer from material packaging problems. This book addresses this critical issue. It offers screening and packaging techniques useful for researchers.
This book introduces high power semiconductor laser packaging design. The challenges of the design and various packaging and testing techniques are detailed by the authors. New technologies and current applications are described in detail.
The book, ‘Laser Physics and Technology’, addresses fundamentals of laser physics, representative laser systems and techniques, and some important applications of lasers. The present volume is a collection of articles based on some of the lectures delivered at the School on ‘Laser Physics and Technology’ organized at Raja Ramanna Centre for Advanced Technology during March, 12-30, 2012. The objective of the School was to provide an in-depth knowledge of the important aspects of laser physics and technology to doctoral students and young researchers and motivate them for further work in this area. In keeping with this objective, the fourteen chapters, written by leading Indian experts, based on the lectures delivered by them at the School, provide along with class room type coverage of the fundamentals of the field, a brief review of the current status of the field. The book will be useful for doctoral students and young scientists who are embarking on a research in this area as well as to professionals who would be interested in knowing the current state of the field particularly in Indian context.
This handbook provides the most comprehensive, up-to-date and easy-to-apply information on the physics, mechanics, reliability and packaging of micro- and opto-electronic materials. It details their assemblies, structures and systems, and each chapter contains a summary of the state-of-the-art in a particular field. The book provides practical recommendations on how to apply current knowledge and technology to design and manufacture. It further describes how to operate a viable, reliable and cost-effective electronic component or photonic device, and how to make such a device into a successful commercial product.
Written from an industrial perspective this book discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. Since its first edition almost 30 years ago this book has become the standard in the field of solid-state lasers for scientists, engineers and graduate students. This edition has been extensively revised and updated to account for recent developments in the areas of diode-laser pumping, laser materials and nonlinear crystals, and entire new sections have been added.
This compilation of review articles by leading experts presents clearly the trend in future optoelectronic devices. It is clear that optoelectronic and photonic integration help to further improve high-speed system capabilities and increase the total systems and network capacities with WDM technology. The foundation of the integration technology is based on quantum well materials, and advanced epitaxial growth and device processing techniques. The integrated laser/ modulators, multi-wavelength laser arrays, and OEIC receivers have demonstrated the feasibility of this technology, but much work remains to be done to put such technology to practice.
The most expensive phase in the manufacture of micro-optical components and fiber optics is also one of the most performance-critical: optical alignment of the components. The increasing degree of miniaturization makes this an especially challenging task. Active alignment methods result in higher costs and awkward processes, and for some applications, they simply are not possible. Passive Micro-Optical Alignment Methods introduces the passive alignment methods that are currently available and illustrates them with many examples, references, and critiques. The first book dedicated to passive alignment, it begins with an overview of the current activities, requirements, and general results of passive optical alignments, followed by three sections of in-depth analysis. The first of these discusses mechanical passive alignment, highlighting silicon waferboard, solder, and "Jitney" technologies as well as application of mechanical alignment to 3D free-space interconnects. The next section describes the various visual alignment techniques applied to Planar Lightwave Circuits (PLCs) and low-cost plastic and surface mount packaging. The final section details various utilities that aid passive alignment and their resulting tradeoffs and demonstrates Monte Carlo analysis to evaluate the potential of a given method. Passive Micro-Optical Alignment Methods provides the tools necessary to meet the challenge of precision and low-cost alignment for applications that require micron or sub-micron tolerance.