The application of quantum mechanics to many-particle systems has been an active area of research in recent years as researchers have looked for ways to tackle difficult problems in this area. The quantum trajectory method provides an efficient computational technique for solving both stationary and time-evolving states, encompassing a large area o
This course-based monograph introduces the reader to the theory of continuous measurements in quantum mechanics and provides some benchmark applications. The approach chosen, quantum trajectory theory, is based on the stochastic Schrödinger and master equations, which determine the evolution of the a-posteriori state of a continuously observed quantum system and give the distribution of the measurement output. The present introduction is restricted to finite-dimensional quantum systems and diffusive outputs. Two appendices introduce the tools of probability theory and quantum measurement theory which are needed for the theoretical developments in the first part of the book. First, the basic equations of quantum trajectory theory are introduced, with all their mathematical properties, starting from the existence and uniqueness of their solutions. This makes the text also suitable for other applications of the same stochastic differential equations in different fields such as simulations of master equations or dynamical reduction theories. In the next step the equivalence between the stochastic approach and the theory of continuous measurements is demonstrated. To conclude the theoretical exposition, the properties of the output of the continuous measurement are analyzed in detail. This is a stochastic process with its own distribution, and the reader will learn how to compute physical quantities such as its moments and its spectrum. In particular this last concept is introduced with clear and explicit reference to the measurement process. The two-level atom is used as the basic prototype to illustrate the theory in a concrete application. Quantum phenomena appearing in the spectrum of the fluorescence light, such as Mollow’s triplet structure, squeezing of the fluorescence light, and the linewidth narrowing, are presented. Last but not least, the theory of quantum continuous measurements is the natural starting point to develop a feedback control theory in continuous time for quantum systems. The two-level atom is again used to introduce and study an example of feedback based on the observed output.
This is a rapidly developing field to which the author is a leading contributor New methods in quantum dynamics and computational techniques, with applications to interesting physical problems, are brought together in this book Useful to both students and researchers
This new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this third edition, there is an enlarged chapter on trapped ions, as well as new sections on quantum computing and quantum bits with applications. There is also additional material included for quantum processing and entanglement. These topics are presented in a unified and didactic manner, each chapter is accompanied by specific problems and hints to solutions to deepen the knowledge.
Recent experimental advances in the control of quantum superconducting circuits, nano-mechanical resonators and photonic crystals has meant that quantum measurement theory is now an indispensable part of the modelling and design of experimental technologies. This book, aimed at graduate students and researchers in physics, gives a thorough introduction to the basic theory of quantum measurement and many of its important modern applications. Measurement and control is explicitly treated in superconducting circuits and optical and opto-mechanical systems, and methods for deriving the Hamiltonians of superconducting circuits are introduced in detail. Further applications covered include feedback control, metrology, open systems and thermal environments, Maxwell's demon, and the quantum-to-classical transition.
This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields.
Due to its extraordinary predictive power and the great generality of its mathematical structure, quantum theory is able, at least in principle, to describe all the microscopic and macroscopic properties of the physical world, from the subatomic to the cosmological level. Nevertheless, ever since the Copen hagen and Gottingen schools in 1927 gave it the definitive formu lation, now commonly known as the orthodox interpretation, the theory has suffered from very serious logical and epistemologi cal problems. These shortcomings were immediately pointed out by some of the principal founders themselves of quantum theory, to wit, Planck, Einstein, Ehrenfest, Schrodinger, and de Broglie, and by the philosopher Karl Popper, who assumed a position of radical criticism with regard to the standard formulation of the theory. The aim of the participants in the workshop on Open Questions in Quantum Physics, which was held in Bari (Italy), in the Department of Physics of the University, during May 1983 and whose Proceedings are collected in the present volume, accord ingly was to discuss the formal, the physical and the epistemo logical difficulties of quantum theory in the light of recent crucial developments and to propose some possible resolutions of three basic conceptual dilemmas, which are posed respectively ~: (a) the physical developments of the Einstein-Podolsky-Rosen argument and Bell's theorem, i. e.
This volume contains ten lectures presented in the series ULB Lectures in Nonlinear Optics at the Universite Libre de Bruxelles during the period October 28 to November 4, 1991. A large part of the first six lectures is taken from material prepared for a book of somewhat larger scope which will be published,by Springer under the title Quantum Statistical Methods in Quantum Optics. The principal reason for the early publication of the present volume concerns the material contained in the last four lectures. Here I have put together, in a more or less systematic way, some ideas about the use of stochastic wavefunctions in the theory of open quantum optical systems. These ideas were developed with the help of two of my students, Murray Wolinsky and Liguang Tian, over a period of approximately two years. They are built on a foundation laid down in a paper written with Surendra Singh, Reeta Vyas, and Perry Rice on waiting-time distributions and wavefunction collapse in resonance fluorescence [Phys. Rev. A, 39, 1200 (1989)]. The ULB lecture notes contain my first serious atte~pt to give a complete account of the ideas and their potential applications. I am grateful to Professor Paul Mandel who, through his invitation to give the lectures, stimulated me to organize something useful out of work that may, otherwise, have waited considerably longer to be brought together.
The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.