Quantum Space

Quantum Space

Author: Jim Baggott

Publisher: Oxford University Press

Published: 2018-11-08

Total Pages: 448

ISBN-13: 019253680X

DOWNLOAD EBOOK

Today we are blessed with two extraordinarily successful theories of physics. The first is Albert Einstein's general theory of relativity, which describes the large-scale behaviour of matter in a curved spacetime. This theory is the basis for the standard model of big bang cosmology. The discovery of gravitational waves at the LIGO observatory in the US (and then Virgo, in Italy) is only the most recent of this theory's many triumphs. The second is quantum mechanics. This theory describes the properties and behaviour of matter and radiation at their smallest scales. It is the basis for the standard model of particle physics, which builds up all the visible constituents of the universe out of collections of quarks, electrons and force-carrying particles such as photons. The discovery of the Higgs boson at CERN in Geneva is only the most recent of this theory's many triumphs. But, while they are both highly successful, these two structures leave a lot of important questions unanswered. They are also based on two different interpretations of space and time, and are therefore fundamentally incompatible. We have two descriptions but, as far as we know, we've only ever had one universe. What we need is a quantum theory of gravity. Approaches to formulating such a theory have primarily followed two paths. One leads to String Theory, which has for long been fashionable, and about which much has been written. But String Theory has become mired in problems. In this book, Jim Baggott describes


Philosophy of Physics

Philosophy of Physics

Author: Tim Maudlin

Publisher: Princeton University Press

Published: 2015-05-26

Total Pages: 199

ISBN-13: 0691165718

DOWNLOAD EBOOK

Philosophical foundations of the physics of space-time This concise book introduces nonphysicists to the core philosophical issues surrounding the nature and structure of space and time, and is also an ideal resource for physicists interested in the conceptual foundations of space-time theory. Tim Maudlin's broad historical overview examines Aristotelian and Newtonian accounts of space and time, and traces how Galileo's conceptions of relativity and space-time led to Einstein's special and general theories of relativity. Maudlin explains special relativity with enough detail to solve concrete physical problems while presenting general relativity in more qualitative terms. Additional topics include the Twins Paradox, the physical aspects of the Lorentz-FitzGerald contraction, the constancy of the speed of light, time travel, the direction of time, and more. Introduces nonphysicists to the philosophical foundations of space-time theory Provides a broad historical overview, from Aristotle to Einstein Explains special relativity geometrically, emphasizing the intrinsic structure of space-time Covers the Twins Paradox, Galilean relativity, time travel, and more Requires only basic algebra and no formal knowledge of physics


The Large Scale Structure of Space-Time

The Large Scale Structure of Space-Time

Author: S. W. Hawking

Publisher: Cambridge University Press

Published: 1975-02-27

Total Pages: 406

ISBN-13: 1139810952

DOWNLOAD EBOOK

Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.


Relativity, Symmetry, and the Structure of Quantum Theory, Volume 2

Relativity, Symmetry, and the Structure of Quantum Theory, Volume 2

Author: William H Klink

Publisher: Morgan & Claypool Publishers

Published: 2018-03-23

Total Pages: 108

ISBN-13: 1681748916

DOWNLOAD EBOOK

The first version of quantum theory, developed in the mid 1920's, is what is called nonrelativistic quantum theory; it is based on a form of relativity which, in a previous volume, was called Newton relativity. But quickly after this first development, it was realized that, in order to account for high energy phenomena such as particle creation, it was necessary to develop a quantum theory based on Einstein relativity. This in turn led to the development of relativistic quantum field theory, which is an intrinsically many-body theory. But this is not the only possibility for a relativistic quantum theory. In this book we take the point of view of a particle theory, based on the irreducible representations of the Poincare group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; we develop what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A central issue in any relativistic quantum theory is how to introduce interactions without spoiling relativistic invariance. We show that interactions can be incorporated in a mass operator, in such a way that relativistic invariance is maintained. Surprisingly for a relativistic theory, such a construction allows for instantaneous interactions; in addition, dynamical particle exchange and particle production can be included in a multichannel formulation of the mass operator. For systems of more than two particles, however, straightforward application of such a construction leads to the undesirable property that clusters of widely separated particles continue to interact with one another, even if the interactions between the individual particles are of short range. A significant part of this volume deals with the solution of this problem. Since relativistic quantum mechanics is not as well-known as relativistic quantum field theory, a chapter is devoted to applications of point form quantum mechanics to nuclear physics; in particular we show how constituent quark models can be used to derive electromagnetic and other properties of hadrons.


Quantum Gravity in 2+1 Dimensions

Quantum Gravity in 2+1 Dimensions

Author: Steven Carlip

Publisher: Cambridge University Press

Published: 2003-12-04

Total Pages: 296

ISBN-13: 9780521545884

DOWNLOAD EBOOK

The first comprehensive survey of (2+1)-dimensional quantum gravity - for graduate students and researchers.


Time in Quantum Mechanics - Vol. 2

Time in Quantum Mechanics - Vol. 2

Author: Gonzalo Muga

Publisher: Springer

Published: 2010-01-13

Total Pages: 426

ISBN-13: 3642031749

DOWNLOAD EBOOK

But all the clocks in the city Began to whirr and chime: ’O let not Time deceive you, You cannot conquer Time. W. H. Auden It is hard to think of a subject as rich, complex, and important as time. From the practical point of view it governs and organizes our lives (most of us are after all attached to a wrist watch) or it helps us to wonderfully ?nd our way in unknown territory with the global positioning system (GPS). More generally it constitutes the heartbeat of modern technology. Time is the most precisely measured quantity, so the second de?nes the meter or the volt and yet, nobody knows for sure what it is, puzzling philosophers, artists, priests, and scientists for centuries as one of the enduring enigmas of all cultures. Indeed time is full of contrasts: taken for granted in daily life, it requires sophisticated experimental and theoretical treatments to be accurately “produced. ” We are trapped in its web, and it actually kills us all, but it also constitutes the stuff we need to progress and realize our objectives. There is nothing more boring and monotonous than the tick-tock of a clock, but how many fascinating challenges have physicists met to realize that monotony: Quite a number of Nobel Prize winners have been directly motivated by them or have contributed 1 signi?cantly to time measurement.


New Spaces in Physics: Volume 2

New Spaces in Physics: Volume 2

Author: Mathieu Anel

Publisher: Cambridge University Press

Published: 2021-04-01

Total Pages: 438

ISBN-13: 1108848206

DOWNLOAD EBOOK

After the development of manifolds and algebraic varieties in the previous century, mathematicians and physicists have continued to advance concepts of space. This book and its companion explore various new notions of space, including both formal and conceptual points of view, as presented by leading experts at the New Spaces in Mathematics and Physics workshop held at the Institut Henri Poincaré in 2015. This volume covers a broad range of topics in mathematical physics, including noncommutative geometry, supergeometry, derived symplectic geometry, higher geometric quantization, intuitionistic quantum logic, problems with the continuum description of spacetime, twistor theory, loop quantum gravity, and geometry in string theory. It is addressed primarily to mathematical physicists and mathematicians, but also to historians and philosophers of these disciplines.


Statistical Structure of Quantum Theory

Statistical Structure of Quantum Theory

Author: Alexander S. Holevo

Publisher: Springer Science & Business Media

Published: 2003-07-01

Total Pages: 166

ISBN-13: 3540449981

DOWNLOAD EBOOK

New ideas on the mathematical foundations of quantum mechanics, related to the theory of quantum measurement, as well as the emergence of quantum optics, quantum electronics and optical communications have shown that the statistical structure of quantum mechanics deserves special investigation. In the meantime it has become a mature subject. In this book, the author, himself a leading researcher in this field, surveys the basic principles and results of the theory, concentrating on mathematically precise formulations. Special attention is given to the measurement dynamics. The presentation is pragmatic, concentrating on the ideas and their motivation. For detailed proofs, the readers, researchers and graduate students, are referred to the extensively documented literature.