Classical Charged Particle Beam Optics used in the design and operation of all present-day charged particle beam devices, from low energy electron microscopes to high energy particle accelerators, is entirely based on classical mechanics. A question of curiosity is: How is classical charged particle beam optics so successful in practice though the particles of the beam, like electrons, are quantum mechanical? Quantum Mechanics of Charged Particle Beam Optics answers this question with a comprehensive formulation of ‘Quantum Charged Particle Beam Optics’ applicable to any charged particle beam device.
Charged Particle Optics Theory: An Introduction identifies the most important concepts of charged particle optics theory, and derives each mathematically from the first principles of physics. Assuming an advanced undergraduate-level understanding of calculus, this book follows a logical progression, with each concept building upon the preceding one. Beginning with a non-mathematical survey of the optical nature of a charged particle beam, the text: Discusses both geometrical and wave optics, as well as the correspondence between them Describes the two-body scattering problem, which is essential to the interaction of a fast charged particle with matter Introduces electron emission as a practical consequence of quantum mechanics Addresses the Fourier transform and the linear second-order differential equation Includes problems to amplify and fill in the theoretical details, with solutions presented separately Charged Particle Optics Theory: An Introduction makes an ideal textbook as well as a convenient reference on the theoretical origins of the optics of charged particle beams. It is intended to prepare the reader to understand the large body of published research in this mature field, with the end result translated immediately to practical application.
Classical Charged Particle Beam Optics used in the design and operation of all present-day charged particle beam devices, from low energy electron microscopes to high energy particle accelerators, is entirely based on classical mechanics. A question of curiosity is: How is classical charged particle beam optics so successful in practice though the particles of the beam, like electrons, are quantum mechanical? Quantum Mechanics of Charged Particle Beam Optics answers this question with a comprehensive formulation of ‘Quantum Charged Particle Beam Optics’ applicable to any charged particle beam device.
Optics of Charged Particles, 2nd edition, describes how charged particles move in the fields of magnetic and electrostatic dipoles, quadrupoles, higher order multipoles, and field-free regions. Since the first edition, published over 30 years ago, new technologies have emerged and have been used for new ion optical instruments like, for instance, time-of-flight mass analyzers, which are described now. Fully updated and revised, this new edition provides ways to design mass separators, spectrographs, and spectrometers, which are the key tools in organic chemistry and for drug developments, in environmental trace analyses and for investigations in nuclear physics like the search for super heavy elements as well as molecules in space science. The book discusses individual particle trajectories as well as particle beams in space and in phase-space, and it provides guidelines for the design of particle optical instruments. For experienced researchers, working in the field, it highlights the latest developments in new ion optical instruments and provides guidelines and examples for the design of new instruments for the transport of beams of charged particles and the mass/charge or energy/charge analyses of ions. Furthermore, it provides background knowledge required to accurately understand and analyze results, when developing ion-optical instruments. By providing a comprehensive overview of the field of charged particle optics, this edition of the book supports all those working, directly or indirectly, with charged-particle research or the development of ion- and electron-analyzing instruments. Provides enhanced, clear descriptions, and derivations making complex aspects of the general motion of charged particles understandable as well as features of charged particle analyzing instruments Assists the reader in applying insights obtained from the principles of charged particle optics to the design of new transporting and mass- or energy-analyzing instruments for ions Discusses new applications and newly occurring issues, which have arisen since the first edition
Advances in Imaging and Electron Physics, Volume 229 merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. Chapters in this release cover Characterization of nanomaterials properties using FE-TEM, Cold field-emission electron sources: From higher brightness to ultrafast beams, Every electron counts: Towards the development of aberration optimized and aberration corrected electron sources, and more. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Advances in Imaging and Electron Physics series
Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density profiles in bunched beams.
"Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers' summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It explains how to design both an FEL device and the accelerator providing the driving beam. Covering both theoretical and experimental aspects, this book allows researchers to attempt a first design of an FEL device."--Prové de l'editor.
The frontiers of beam research point to increasingly high energy, greater brightness and lower emittance beams with ever-increasing particle species. These demands in turn have triggered a rapidly growing number of beam phenomena that involve quantum effects. Concurrently, the violent accelerations which are becoming available through novel accelerator research may, perhaps, help to investigate fundamental physics associated with general relativity. In view of these exciting developments and the important role they may play in the next century, the world's first conference on the 'Quantum Aspects of Beam Physics', held at Monterey, California, in January 1998, attracted a broad spectrum of experts from beam physics, particle physics, laser science, astrophysics, condensed matter physics, nuclear and atomic physics. At the end of the meeting, a new term 'quantum beam physics' was coined.This book collects together the excellent reviews and papers on new advances in the field which were presented during the workshop. It should be a valuable reference to all physicists interested in the frontiers of quantum beam physics.
This proceedings volume of the 3rd International Workshop on Quantum Aspects of Beam Physics, presents the latest advances in beam dynamics. The frontiers of beam research point to increasingly high energy, greater brightness and lower emittance beams with ever-increasing particle species. These demands have triggered a rapidly growing number of beam phenomena that involve quantum effects. In addition to the more established topics, this volume covers topics on high energy-density particle and photon beams for laboratory astrophysics investigations, as well as the application of beam physics expertise to astrophysics studies. Other exciting new topics are the physics of ultra-cold or condensed beams, such as the ''''crystalline beams'''' and the BoseOCoEinstein condensate ''''atom lasers''''. This book will be a valuable source of reference to readers interested in the interdisciplinary frontiers of ''''quantum beam physics'''' that involve beam physics, particle physics, laser science, astrophysics, condensed matter physics, nuclear and atomic physics. The proceedings have been selected for coverage in: . OCo Index to Scientific & Technical Proceedings- (ISTP- / ISI Proceedings). OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences."
This proceedings volume of the 3rd International Workshop on Quantum Aspects of Beam Physics, presents the latest advances in beam dynamics. The frontiers of beam research point to increasingly high energy, greater brightness and lower emittance beams with ever-increasing particle species. These demands have triggered a rapidly growing number of beam phenomena that involve quantum effects.In addition to the more established topics, this volume covers topics on high energy-density particle and photon beams for laboratory astrophysics investigations, as well as the application of beam physics expertise to astrophysics studies. Other exciting new topics are the physics of ultra-cold or condensed beams, such as the “crystalline beams” and the Bose-Einstein condensate “atom lasers”.This book will be a valuable source of reference to readers interested in the interdisciplinary frontiers of “quantum beam physics” that involve beam physics, particle physics, laser science, astrophysics, condensed matter physics, nuclear and atomic physics.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings)• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences