Quantum Mechanics

Quantum Mechanics

Author: Mark Beck

Publisher: Oxford University Press

Published: 2012-07-01

Total Pages: 529

ISBN-13: 0199798230

DOWNLOAD EBOOK

This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mathematics of a relatively simple system, before moving on to more complicated systems. After describing polarization, the text goes on to describe spin systems, time evolution, continuous variable systems (particle in a box, harmonic oscillator, hydrogen atom, etc.), and perturbation theory. The book also includes chapters which describe material that is frequently absent from undergraduate texts: quantum measurement, entanglement, quantum field theory and quantum information. This material is connected not only to the laboratories described in the text, but also to other recent experiments. Other subjects covered that do not often make their way into undergraduate texts are coherence, complementarity, mixed states, the density operator and coherent states. Supplementary material includes further details about implementing the laboratories, including parts lists and software for running the experiments. Computer simulations of some of the experiments are available as well. A solutions manual for end-of-chapter problems is available to instructors.


Quantum Mechanics, Volume 1

Quantum Mechanics, Volume 1

Author: Claude Cohen-Tannoudji

Publisher: John Wiley & Sons

Published: 2019-12-04

Total Pages: 950

ISBN-13: 3527345531

DOWNLOAD EBOOK

This new edition of the unrivalled textbook introduces the fundamental concepts of quantum mechanics such as waves, particles and probability before explaining the postulates of quantum mechanics in detail. In the proven didactic manner, the textbook then covers the classical scope of introductory quantum mechanics, namely simple two-level systems, the one-dimensional harmonic oscillator, the quantized angular momentum and particles in a central potential. The entire book has been revised to take into account new developments in quantum mechanics curricula. The textbook retains its typical style also in the new edition: it explains the fundamental concepts in chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications. * The quantum mechanics classic in a new edition: written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly * Comprehensive: in addition to the fundamentals themselves, the book contains more than 350 worked examples plus exercises Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms. Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics. Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.


A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics

Author: Hans-A. Bachor

Publisher: John Wiley & Sons

Published: 2019-10-28

Total Pages: 588

ISBN-13: 3527411933

DOWNLOAD EBOOK

Provides fully updated coverage of new experiments in quantum optics This fully revised and expanded edition of a well-established textbook on experiments on quantum optics covers new concepts, results, procedures, and developments in state-of-the-art experiments. It starts with the basic building blocks and ideas of quantum optics, then moves on to detailed procedures and new techniques for each experiment. Focusing on metrology, communications, and quantum logic, this new edition also places more emphasis on single photon technology and hybrid detection. In addition, it offers end-of-chapter summaries and full problem sets throughout. Beginning with an introduction to the subject, A Guide to Experiments in Quantum Optics, 3rd Edition presents readers with chapters on classical models of light, photons, quantum models of light, as well as basic optical components. It goes on to give readers full coverage of lasers and amplifiers, and examines numerous photodetection techniques being used today. Other chapters examine quantum noise, squeezing experiments, the application of squeezed light, and fundamental tests of quantum mechanics. The book finishes with a section on quantum information before summarizing of the contents and offering an outlook on the future of the field. -Provides all new updates to the field of quantum optics, covering the building blocks, models and concepts, latest results, detailed procedures, and modern experiments -Places emphasis on three major goals: metrology, communications, and quantum logic -Presents fundamental tests of quantum mechanics (Schrodinger Kitten, multimode entanglement, photon systems as quantum emulators), and introduces the density function -Includes new trends and technologies in quantum optics and photodetection, new results in sensing and metrology, and more coverage of quantum gates and logic, cluster states, waveguides for multimodes, discord and other quantum measures, and quantum control -Offers end of chapter summaries and problem sets as new features A Guide to Experiments in Quantum Optics, 3rd Edition is an ideal book for professionals, and graduate and upper level students in physics and engineering science.


Exploring the Quantum

Exploring the Quantum

Author: Serge Haroche

Publisher: OUP Oxford

Published: 2006-08-11

Total Pages: 616

ISBN-13: 0191523240

DOWNLOAD EBOOK

The counter-intuitive aspects of quantum physics have been long illustrated by thought experiments, from Einstein's photon box to Schrödinger's cat. These experiments have now become real, with single particles - electrons, atoms, or photons - directly unveiling the strange features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.


The Quantum Theory of Light

The Quantum Theory of Light

Author: Rodney Loudon

Publisher: OUP Oxford

Published: 2000-09-07

Total Pages: 454

ISBN-13: 0191589780

DOWNLOAD EBOOK

This third edition, like its two predecessors, provides a detailed account of the basic theory needed to understand the properties of light and its interactions with atoms, in particular the many nonclassical effects that have now been observed in quantum-optical experiments. The earlier chapters describe the quantum mechanics of various optical processes, leading from the classical representation of the electromagnetic field to the quantum theory of light. The later chapters develop the theoretical descriptions of some of the key experiments in quantum optics. Over half of the material in this third edition is new. It includes topics that have come into prominence over the last two decades, such as the beamsplitter theory, squeezed light, two-photon interference, balanced homodyne detection, travelling-wave attenuation and amplification, quantum jumps, and the ranges of nonliner optical processes important in the generation of nonclassical light. The book is written as a textbook, with the treatment as a whole appropriate for graduate or postgraduate students, while earlier chapters are also suitable for final- year undergraduates. Over 100 problems help to intensify the understanding of the material presented.


Foundations Of Quantum Mechanics In The Light Of New Technology: Isqm-tokyo '05 - Proceedings Of The 8th International Symposium

Foundations Of Quantum Mechanics In The Light Of New Technology: Isqm-tokyo '05 - Proceedings Of The 8th International Symposium

Author: Sachio Ishioka

Publisher: World Scientific

Published: 2006-06-27

Total Pages: 337

ISBN-13: 9814477605

DOWNLOAD EBOOK

The goal of the 8th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology was to link recent advances in technology with fundamental problems and issues in quantum mechanics with an emphasis on quantum coherence, decoherence, and geometrical phase.The papers collected in this volume cover a wide range of quantum physics, including quantum information and entanglement, quantum computing, quantum-dot systems, the anomalous Hall effect and the spin-Hall effect, spin related phenomena, superconductivity in nano-systems, precise measurements, and fundamental problems. The volume serves both as an excellent reference for experts and a useful introduction for newcomers to the field of quantum coherence and decoherence.


Foundations Of Quantum Mechanics In The Light Of New Technology, Proceedings Of The 7th Intl Symp (Isqm-tokyo '01)

Foundations Of Quantum Mechanics In The Light Of New Technology, Proceedings Of The 7th Intl Symp (Isqm-tokyo '01)

Author: Kazuo Fujikawa

Publisher: World Scientific

Published: 2002-10-23

Total Pages: 349

ISBN-13: 9814487686

DOWNLOAD EBOOK

This book discusses fundamental problems in quantum physics, with emphasis on quantum coherence and decoherence. Papers covering the wide range of quantum physics are included: atom optics, quantum optics, quantum computing, quantum information, cryptography, macroscopic quantum phenomena, mesoscopic physics, physics of precise measurements, and fundamental problems in quantum physics.The book will serve not only as a good introduction to quantum coherence and decoherence for newcomers in this field, but also as a reference for experts.


Proceedings of the 7th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology

Proceedings of the 7th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology

Author: K. Fujikawa

Publisher: World Scientific

Published: 2002

Total Pages: 349

ISBN-13: 9812776710

DOWNLOAD EBOOK

This book discusses fundamental problems in quantum physics, with emphasis on quantum coherence and decoherence. Papers covering the wide range of quantum physics are included: atom optics, quantum optics, quantum computing, quantum information, cryptography, macroscopic quantum phenomena, mesoscopic physics, physics of precise measurements, and fundamental problems in quantum physics. The book will serve not only as a good introduction to quantum coherence and decoherence for newcomers in this field, but also as a reference for experts. Contents: Quantum Computing: Decoherence and Dephasing in Spin-Based Solid State Quantum Computers (S Das Sarma et al.); Quantum-State Manipulations in a Cooper-Pair Box (Y Nakamura et al.); Quantum State Engineering and Josephson Junctions: Charge and Flux Detectors (Yu Makhlin et al.); Quantum Information, Quantum Teleportation, and Entanglement: High-Fidelity Experimental Quantum Teleportation and Entanglement Swapping (A Zeilinger et al.); Experimental Realization of Continuous-Variable Teleportation (A Furusawa); Quantum Optics: Entanglement Manipulation with Atoms and Photons in a Cavity (S Haroche); Generation of Single Photons and Entangled Photon Pairs from a Quantum Dot (Y Yamamoto et al.); Twin Photon Beams for Single Photon Generation (S Takeuchi); Bose-Einstein Condensation and Atom Interferometry: Quantized Vortices in a Bose-Einstein Condensate (J Dalibard et al.); Vortex Excitations in a Bose-Einstein Condensate (S Inouye et al.); Mesoscopic Magnets: Environmental Effects on Quantum Reversal of Mesoscopic Spins (B Barbara et al.); Resistance of Geometrically Confined Magnetic Domain Wall (T Ono et al.); Single Electronics and Superconductors: A Single-Photon Detector in the Far-Infrared Range (O Astafiev et al.); Nanoscale Physics and Atomics: Quantized Conductance of Gold Nanowire Studied by UHV-Electron Microscope with STM (K Takayanagi); Quantum Transport: Quantum Transport in Two-Dimensional Electron Gas in Ultra-Short Period Lateral Superlattices (Y Iye et al.); Enhanced Tunnel Magnetoresistance in Ferromagnetic Single Electron Transistor (R Matsuda et al.); Precise Measurements: Oscillation Phenomena in High Energy Physics: CP Violation in B-Meson Decays and Long Baseline Neutrino Oscillation (K Nakamura); Dynamic Observation of Vortices in High-T c Superconductors (A Tonomura); Precision Optical Frequency Metrology Using Pulsed Lasers (Th Udem et al.); Interferometric Gravitational Wave Detector in Japan (N Mio); Fundamental Problems in Quantum Physics: Quantum Information Aspects of Black Hole (A Hosoya); and other papers. Readership: Undergraduates, graduate students and researchers in quantum physics, atomic physics and optics.