Quantum Linear Groups and Representations of $GL_n({\mathbb F}_q)$

Quantum Linear Groups and Representations of $GL_n({\mathbb F}_q)$

Author: Jonathan Brundan

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 127

ISBN-13: 0821826166

DOWNLOAD EBOOK

We give a self-contained account of the results originating in the work of James and the second author in the 1980s relating the representation theory of GL[n(F[q) over fields of characteristic coprime to q to the representation theory of "quantum GL[n" at roots of unity. The new treatment allows us to extend the theory in several directions. First, we prove a precise functorial connection between the operations of tensor product in quantum GL[n and Harish-Chandra induction in finite GL[n. This allows us to obtain a version of the recent Morita theorem of Cline, Parshall and Scott valid in addition for p-singular classes. From that we obtain simplified treatments of various basic known facts, such as the computation of decomposition numbers and blocks of GL[n(F[q) from knowledge of the same for the quantum group, and the non-defining analogue of Steinberg's tensor product theorem. We also easily obtain a new double centralizer property between GL[n(F[[q) and quantum GL[n, generalizing a result of Takeuchi. Finally, we apply the theory to study the affine general linear group, following ideas of Zelevinsky in characteristic zero. We prove results that can be regarded as the modular analogues of Zelevinsky's and Thoma's branching rules. Using these, we obtain a new dimension formula for the irreducible cross-characteristic representations of GL[n(F[q), expressing their dimensions in terms of the characters of irreducible modules over the quantum group.


A Course in Real Analysis

A Course in Real Analysis

Author: Hugo D. Junghenn

Publisher: CRC Press

Published: 2015-02-13

Total Pages: 613

ISBN-13: 148221928X

DOWNLOAD EBOOK

A Course in Real Analysis provides a rigorous treatment of the foundations of differential and integral calculus at the advanced undergraduate level. The book's material has been extensively classroom tested in the author's two-semester undergraduate course on real analysis at The George Washington University.The first part of the text presents the


Algebraic Geometry

Algebraic Geometry

Author: Ulrich Görtz

Publisher: Springer Science & Business Media

Published: 2010-08-06

Total Pages: 622

ISBN-13: 3834897221

DOWNLOAD EBOOK

This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.


Quantum Linear Groups

Quantum Linear Groups

Author: Brian Parshall

Publisher: American Mathematical Soc.

Published: 1991

Total Pages: 168

ISBN-13: 0821825011

DOWNLOAD EBOOK

We consider the theory of quantum groups as a natural abstraction of the theory of affine group schemes. After establishing the foundational results as the theory of induced representations, rational cohomology, and the Hochschild-Serre spectral sequence, we take up a detailed investigation of the quantum linear group [italic]GL[italic subscript]q([italic]n). In particular, we develop the global and infinitesimal representation theory of [italic]GL[italic subscript]q([italic]n) and its subgroups.


Schubert Calculus and Its Applications in Combinatorics and Representation Theory

Schubert Calculus and Its Applications in Combinatorics and Representation Theory

Author: Jianxun Hu

Publisher: Springer Nature

Published: 2020-10-24

Total Pages: 367

ISBN-13: 9811574510

DOWNLOAD EBOOK

This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.


Encyclopedia of the Philosophical Sciences in Outline, and Critical Writings

Encyclopedia of the Philosophical Sciences in Outline, and Critical Writings

Author: Georg Wilhelm Friedrich Hegel

Publisher: Burns & Oates

Published: 1990

Total Pages: 368

ISBN-13:

DOWNLOAD EBOOK

Hegel's system of philosophy was not only the leading form of metaphysics during his lifetime, but it has taken on increasing significance in our own time. The main element in this compact collection of Hegel's thought is an eagerly awaited new translation of one of the most influential works of thought ever written, the "Encyclopedia of the Philosophical Sciences in Outline." Also included is "Preface to the System of Philosophy" and "Solger's Posthumous Writings and Correspondence." (For other texts in German Philosophy, see vols. 5, 13, 23, 27, 40, 48, and 78)


Representations of the Rotation and Lorentz Groups and Their Applications

Representations of the Rotation and Lorentz Groups and Their Applications

Author: I. M. Gelfand

Publisher: Courier Dover Publications

Published: 2018-04-18

Total Pages: 385

ISBN-13: 0486823857

DOWNLOAD EBOOK

This monograph on the description and study of representations of the rotation group of three-dimensional space and of the Lorentz group features advanced topics and techniques crucial to many areas of modern theoretical physics. Prerequisites include a familiarity with the differential and integral calculus of several variables and the fundamentals of linear algebra. Suitable for advanced undergraduate and graduate students in mathematical physics, the book is also designed for mathematicians studying the representations of Lie groups, for whom it can serve as an introduction to the general theory of representation. The treatment encompasses all the basic material of the theory of representations used in quantum mechanics. The two-part approach begins with representations of the group of rotations of three-dimensional space, analyzing the rotation group and its representations. The second part, covering representations of the Lorentz group, includes an exploration of relativistic-invariant equations. The text concludes with three helpful supplements and a bibliography.


Selberg Zeta and Theta Functions

Selberg Zeta and Theta Functions

Author: Ulrich Bunke

Publisher: De Gruyter Akademie Forschung

Published: 1995

Total Pages: 176

ISBN-13:

DOWNLOAD EBOOK

The authors give a self contained exposition of the theory of Selberg zeta and theta functions for bundles on compact locally symmetric spaces of rank 1. The connection between these functions and the spectrum of certain elliptic differential operators is provided by a version of the Selberg trace formula. The theta function is a regularized trace of the wave group. Originally defined geometrically, the Selberg zeta function has a representation in terms of regularized determinants. This leads to a complete description of its singularities. These results are employed in order to establish a functional equation and further properties of the Ruelle zeta function. A couple of explicit examples is worked out. Additional chapters are devoted to the theta function of Riemannian surfaces with cusps and to alternative descriptions of the singularities of the Selberg zeta function in terms of Lie algebra and group cohomology.


Linear Representations of the Lorentz Group

Linear Representations of the Lorentz Group

Author: M. A. Naimark

Publisher: Elsevier

Published: 2014-07-15

Total Pages: 465

ISBN-13: 1483184986

DOWNLOAD EBOOK

Linear Representations of the Lorentz Group is a systematic exposition of the theory of linear representations of the proper Lorentz group and the complete Lorentz group. This book consists of four chapters. The first two chapters deal with the basic material on the three-dimensional rotation group, on the complete Lorentz group and the proper Lorentz group, as well as the theory of representations of the three-dimensional rotation group. These chapters also provide the necessary basic information from the general theory of group representations. The third chapter is devoted to the representations of the proper Lorentz group and the complete Lorentz group, while the fourth chapter examines the theory of invariant equations. This book will prove useful to mathematicians and students.