This volume constitutes the proceedings of the first conference on the specific subject of radiative corrections (quantum effects) to physical processes within the framework of the minimal supersymmetric standard model (MSSM). While there have been many conferences covering general aspects of supersymmetry, this one brought together leading experts on phenomenological aspects of SUSY and focused on the search for indirect effects of supersymmetric particles. Participants discussed the status and perspectives of the MSSM from the viewpoint of present and future high precision experiments at LEP, Tevatron, LHC and at a future NLC.
Dark matter and dark energy are one of the central mysteries in modern physics, although modern astrophysical and cosmological observations and particle physics experiments can and will provide vital clues in uncovering its true nature. The DARK 2009 Conference brought together World?s leading researchers in both astrophysics and particle physics, providing an opportunity and platform to present their latest results to the community. The topics covered are wide-ranging, from terrestrial underground experiments to space experimental efforts to search for dark matter, and on the theoretical aspects, from the generating of a fifth family as origin of dark matter, extra dimensions and dark matter to non-standard Wigner classes and dark matter. One of the new highlights was certainly a possible connection between a neutrino mass as observed by nuclear double beta decay and the dark energy. Highly important and relevant in its field, the book presents a vital snapshot of the sometimes seemingly disparate areas of dark matter research and offers an exciting overview of current ideas and future directions.
The first precision measurements on CP violation in the B system are reported. Both the BELLE and the BABAR collaboration presented, among others, results for sin 2ß with much improved accuracy. Results from the Sudbury Neutrino Observatory, SNO, also deserve to be mentioned. The convincing evidence of solar neutrino oscillations had been presented by SNO prior to the conference; a full presentation was given at the conference. An incredibly precise measurement of the anomalous magnetic moment of the muon is reported, a fresh result from the Brookhaven National Laboratory. Apart from these distinct physics highlights, there are also the first results from the new Tevatron run and from the relativistic heavy ion collider RHIC. Theorists write of our ever better understanding of the Standard Model and of what might lie beyond. Risky as it is to highlight only a couple of exciting subjects, it is merely meantto whet the appetite for further reading.
This proceedings focuses on the theoretical and experimental status of the Standard Model of the strong and electroweak interactions. They are discussed in the light of recent experimental results from high energy e+e- and hadron colliders.
Nuclear double beta decay is one of the most promising tools for probing beyond-the-standard-model physics on beyond-accelerator energy scales. It is already now probing the TeV scale, on which new physics should manifest itself according to theoretical expectations. Only in the early 1980s was it known that double beta decay yields information on the Majorana mass of the exchanged neutrino. At present, the sharpest bound for the electron neutrino mass arises from this process. It is only in the last 10 years that the much more far-reaching potential of double beta decay has been discovered. Today, the potential of double beta decay includes a broad range of topics that are equally relevant to particle physics and astrophysics, such as masses of heavy neutrinos, of sneutrinos, as SUSY models, compositeness, leptoquarks, left-right symmetric models, and tests of Lorentz symmetry and equivalence principle in the neutrino sector. Double beta decay has become indispensable nowadays for solving the problem of the neutrino mass spectrum and the structure of the neutrino mass matrix — together with present and future solar and atmospheric neutrino oscillation experiments. Some future double beta experiments (like GENIUS) will be capable to be simultaneously neutrino observatories for double beta decay and low-energy solar neutrinos, and observatories for cold dark matter of ultimate sensitivity.This invaluable book outlines the development of double beta research from its beginnings until its most recent achievements, and also presents the outlook for its highly exciting future.
This volume covers many different subjects, from very high energy cosmic rays to neutrino physics, gravitational waves and cosmology. Recent achievements and the exciting years to come are emphasized.
Nuclear double beta decay is - together with proton decay - one of the most promising tools for probing beyond-the-standard-model physics on beyond-accelerator energy scales. It is already probing the TeV scale, on which new physics should manifest itself according to theoretical expectations. Only in the early 1980s was it known that double beta decay yields information on the Majorana mass of the exchanged neutrino. At present, the sharpest bound for the electron neutrino arises from this process. It is only in the last 10 years that the much more far-reaching potential of double beta decay has been discovered. Today, the potential of double beta decay includes a broad range of topics that are equally relevant to particle physics & astrophysics, such as masses of heavy neutrinos, the sneutrino, SUSY models, compositeness, leptoquarks & right-handed W bosons. This invaluable book outlines the development of double beta research from its beginnings until its most recent achievements, & also presents the outlook for its highly exciting future. Readership: Particle physicists, nuclear physicists & astrophysicists.
The 28th conference from the Rochester series was the major high energy physics conference in 1996. Volume one contains short reports on new theoretical and experimental results. Volume two consists of the review talks presented in the plenary sessions.