Quantum Dynamics of Complex Molecular Systems

Quantum Dynamics of Complex Molecular Systems

Author: David A. Micha

Publisher: Springer Science & Business Media

Published: 2006-11-22

Total Pages: 424

ISBN-13: 3540344608

DOWNLOAD EBOOK

Quantum phenomena are ubiquitous in complex molecular systems - as revealed by many experimental observations based upon ultrafast spectroscopic techniques - and yet remain a challenge for theoretical analysis. The present volume, based on a May 2005 workshop, examines and reviews the state-of-the-art in the development of new theoretical and computational methods to interpret the observed phenomena. Emphasis is on complex molecular processes involving surfaces, clusters, solute-solvent systems, materials, and biological systems. The research summarized in this book shows that much can be done to explain phenomena in systems excited by light or through atomic interactions. It demonstrates how to tackle the multidimensional dynamics arising from the atomic structure of a complex system, and addresses phenomena in condensed phases as well as phenomena at surfaces. The chapters on new methodological developments cover both phenomena in isolated systems, and phenomena which involve the statistical effects of an environment, such as fluctuations and dissipation. The methodology part explores new rigorous ways to formulate mixed quantum-classical dynamics in many dimensions, along with new ways to solve a many-atom Schroedinger equation, or the Liouville-von Neumann equation for the density operator, using trajectories and ideas related to hydrodynamics. Part I treats applications to complex molecular systems, and Part II covers new theoretical and computational methods


Coherent Dynamics of Complex Quantum Systems

Coherent Dynamics of Complex Quantum Systems

Author: Vladimir M. Akulin

Publisher: Springer Science & Business Media

Published: 2005-09-13

Total Pages: 477

ISBN-13: 3540210520

DOWNLOAD EBOOK

Coherent Dynamics of Complex Quantum Systems is aimed at senior-level undergraduate students in the areas of atomic, molecular, and laser physics, physical chemistry, quantum optics and quantum informatics. It should help them put particular problems in these fields into a broader scientific context and thereby take advantage of the well-elaborated technique of the adjacent fields.


Chemical Dynamics in Condensed Phases

Chemical Dynamics in Condensed Phases

Author: Abraham Nitzan

Publisher: Oxford University Press

Published: 2006-04-06

Total Pages: 743

ISBN-13: 9780198529798

DOWNLOAD EBOOK

Graduate level textbook presenting some of the most fundamental processes that underlie physical, chemical and biological phenomena in complex condensed phase systems. Includes in-depth descriptions of relevant methodologies, and provides ample introductory material for readers of different backgrounds.


Quantum Dynamics with Trajectories

Quantum Dynamics with Trajectories

Author: Robert E. Wyatt

Publisher: Springer Science & Business Media

Published: 2006-05-28

Total Pages: 425

ISBN-13: 0387281452

DOWNLOAD EBOOK

This is a rapidly developing field to which the author is a leading contributor New methods in quantum dynamics and computational techniques, with applications to interesting physical problems, are brought together in this book Useful to both students and researchers


Quantum Chemistry and Dynamics of Excited States

Quantum Chemistry and Dynamics of Excited States

Author: Leticia González

Publisher: John Wiley & Sons

Published: 2021-02-01

Total Pages: 52

ISBN-13: 1119417759

DOWNLOAD EBOOK

An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.


Molecular Quantum Dynamics

Molecular Quantum Dynamics

Author: Fabien Gatti

Publisher: Springer Science & Business Media

Published: 2014-04-09

Total Pages: 281

ISBN-13: 3642452906

DOWNLOAD EBOOK

This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.


Molecular Spectroscopy and Quantum Dynamics

Molecular Spectroscopy and Quantum Dynamics

Author: Roberto Marquardt

Publisher: Elsevier

Published: 2020-09-18

Total Pages: 376

ISBN-13: 0128172355

DOWNLOAD EBOOK

Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field. - Contains new insights into the quantum dynamics and spectroscopy of electronic and nuclear motion - Presents the most recent developments in the detection and interpretation of ultra-fast phenomena - Includes a discussion of the importance of these phenomena for the understanding of chemical reaction dynamics and kinetics in relation to molecular spectra and structure


Classical And Quantum Dynamics In Condensed Phase Simulations: Proceedings Of The International School Of Physics

Classical And Quantum Dynamics In Condensed Phase Simulations: Proceedings Of The International School Of Physics

Author: Bruce J Berne

Publisher: World Scientific

Published: 1998-06-17

Total Pages: 881

ISBN-13: 9814496057

DOWNLOAD EBOOK

The school held at Villa Marigola, Lerici, Italy, in July 1997 was very much an educational experiment aimed not just at teaching a new generation of students the latest developments in computer simulation methods and theory, but also at bringing together researchers from the condensed matter computer simulation community, the biophysical chemistry community and the quantum dynamics community to confront the shared problem: the development of methods to treat the dynamics of quantum condensed phase systems.This volume collects the lectures delivered there. Due to the focus of the school, the contributions divide along natural lines into two broad groups: (1) the most sophisticated forms of the art of computer simulation, including biased phase space sampling schemes, methods which address the multiplicity of time scales in condensed phase problems, and static equilibrium methods for treating quantum systems; (2) the contributions on quantum dynamics, including methods for mixing quantum and classical dynamics in condensed phase simulations and methods capable of treating all degrees of freedom quantum-mechanically.


Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and Biology

Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and Biology

Author: Alexander V. Glushkov

Publisher: Springer Nature

Published: 2021-06-29

Total Pages: 358

ISBN-13: 3030683141

DOWNLOAD EBOOK

This book reviews the most significant advances in concepts, methods, and applications of quantum systems in a broad variety of problems in modern chemistry, physics, and biology. In particular, it discusses atomic, molecular, and solid structure, dynamics and spectroscopy, relativistic and correlation effects in quantum chemistry, topics of computational chemistry, physics and biology, as well as applications of theoretical chemistry and physics in advanced molecular and nano-materials and biochemical systems. The book contains peer-reviewed contributions written by leading experts in the fields and based on the presentations given at the Twenty-Fourth International Workshop on Quantum Systems in Chemistry, Physics, and Biology held in Odessa, Ukraine, in August 2019. This book is aimed at advanced graduate students, academics, and researchers, both in university and corporation laboratories, interested in state-of-the-art and novel trends in quantum chemistry, physics, biology, and their applications.


Quantum Modeling of Complex Molecular Systems

Quantum Modeling of Complex Molecular Systems

Author: Jean-Louis Rivail

Publisher: Springer

Published: 2015-10-13

Total Pages: 524

ISBN-13: 3319216260

DOWNLOAD EBOOK

This multi-author contributed volume includes methodological advances and original applications to actual chemical or biochemical phenomena which were not possible before the increased sophistication of modern computers. The chapters contain detailed reviews of the developments of various computational techniques, used to study complex molecular systems such as molecular liquids and solutions (particularly aqueous solutions), liquid-gas, solid-gas interphase and biomacromolecular systems. Quantum modeling of complex molecular systems is a useful resource for graduate students and fledgling researchers and is also an excellent companion for research professionals engaged in computational chemistry, material science, nanotechnology, physics, drug design, and molecular biochemistry.