Quantum Cryptography and the Future of Cyber Security

Quantum Cryptography and the Future of Cyber Security

Author: Chaubey, Nirbhay Kumar

Publisher: IGI Global

Published: 2020-01-03

Total Pages: 343

ISBN-13: 1799822559

DOWNLOAD EBOOK

The shortcomings of modern cryptography and its weaknesses against computers that are becoming more powerful necessitate serious consideration of more robust security options. Quantum cryptography is sound, and its practical implementations are becoming more mature. Many applications can use quantum cryptography as a backbone, including key distribution, secure direct communications, large prime factorization, e-commerce, e-governance, quantum internet, and more. For this reason, quantum cryptography is gaining interest and importance among computer and security professionals. Quantum Cryptography and the Future of Cyber Security is an essential scholarly resource that provides the latest research and advancements in cryptography and cyber security through quantum applications. Highlighting a wide range of topics such as e-commerce, machine learning, and privacy, this book is ideal for security analysts, systems engineers, software security engineers, data scientists, vulnerability analysts, professionals, academicians, researchers, security professionals, policymakers, and students.


Limitations and Future Applications of Quantum Cryptography

Limitations and Future Applications of Quantum Cryptography

Author: Kumar, Neeraj

Publisher: IGI Global

Published: 2020-12-18

Total Pages: 305

ISBN-13: 1799866793

DOWNLOAD EBOOK

The concept of quantum computing is based on two fundamental principles of quantum mechanics: superposition and entanglement. Instead of using bits, qubits are used in quantum computing, which is a key indicator in the high level of safety and security this type of cryptography ensures. If interfered with or eavesdropped in, qubits will delete or refuse to send, which keeps the information safe. This is vital in the current era where sensitive and important personal information can be digitally shared online. In computer networks, a large amount of data is transferred worldwide daily, including anything from military plans to a country’s sensitive information, and data breaches can be disastrous. This is where quantum cryptography comes into play. By not being dependent on computational power, it can easily replace classical cryptography. Limitations and Future Applications of Quantum Cryptography is a critical reference that provides knowledge on the basics of IoT infrastructure using quantum cryptography, the differences between classical and quantum cryptography, and the future aspects and developments in this field. The chapters cover themes that span from the usage of quantum cryptography in healthcare, to forensics, and more. While highlighting topics such as 5G networks, image processing, algorithms, and quantum machine learning, this book is ideally intended for security professionals, IoT developers, computer scientists, practitioners, researchers, academicians, and students interested in the most recent research on quantum computing.


Cyber Security and Digital Forensics

Cyber Security and Digital Forensics

Author: Sabyasachi Pramanik

Publisher: John Wiley & Sons

Published: 2022-01-12

Total Pages: 300

ISBN-13: 1119795648

DOWNLOAD EBOOK

CYBER SECURITY AND DIGITAL FORENSICS Cyber security is an incredibly important issue that is constantly changing, with new methods, processes, and technologies coming online all the time. Books like this are invaluable to professionals working in this area, to stay abreast of all of these changes. Current cyber threats are getting more complicated and advanced with the rapid evolution of adversarial techniques. Networked computing and portable electronic devices have broadened the role of digital forensics beyond traditional investigations into computer crime. The overall increase in the use of computers as a way of storing and retrieving high-security information requires appropriate security measures to protect the entire computing and communication scenario worldwide. Further, with the introduction of the internet and its underlying technology, facets of information security are becoming a primary concern to protect networks and cyber infrastructures from various threats. This groundbreaking new volume, written and edited by a wide range of professionals in this area, covers broad technical and socio-economic perspectives for the utilization of information and communication technologies and the development of practical solutions in cyber security and digital forensics. Not just for the professional working in the field, but also for the student or academic on the university level, this is a must-have for any library. Audience: Practitioners, consultants, engineers, academics, and other professionals working in the areas of cyber analysis, cyber security, homeland security, national defense, the protection of national critical infrastructures, cyber-crime, cyber vulnerabilities, cyber-attacks related to network systems, cyber threat reduction planning, and those who provide leadership in cyber security management both in public and private sectors


The CISO’s Next Frontier

The CISO’s Next Frontier

Author: Raj Badhwar

Publisher: Springer Nature

Published: 2021-08-05

Total Pages: 398

ISBN-13: 3030753549

DOWNLOAD EBOOK

This book provides an advanced understanding of cyber threats as well as the risks companies are facing. It includes a detailed analysis of many technologies and approaches important to decreasing, mitigating or remediating those threats and risks. Cyber security technologies discussed in this book are futuristic and current. Advanced security topics such as secure remote work, data security, network security, application and device security, cloud security, and cyber risk and privacy are presented in this book. At the end of every chapter, an evaluation of the topic from a CISO’s perspective is provided. This book also addresses quantum computing, artificial intelligence and machine learning for cyber security The opening chapters describe the power and danger of quantum computing, proposing two solutions for protection from probable quantum computer attacks: the tactical enhancement of existing algorithms to make them quantum-resistant, and the strategic implementation of quantum-safe algorithms and cryptosystems. The following chapters make the case for using supervised and unsupervised AI/ML to develop predictive, prescriptive, cognitive and auto-reactive threat detection, mitigation, and remediation capabilities against advanced attacks perpetrated by sophisticated threat actors, APT and polymorphic/metamorphic malware. CISOs must be concerned about current on-going sophisticated cyber-attacks, and can address them with advanced security measures. The latter half of this book discusses some current sophisticated cyber-attacks and available protective measures enabled by the advancement of cybersecurity capabilities in various IT domains. Chapters 6-10 discuss secure remote work; chapters 11-17, advanced data security paradigms; chapters 18-28, Network Security; chapters 29-35, application and device security; chapters 36-39, Cloud security; and chapters 40-46 organizational cyber risk measurement and event probability. Security and IT engineers, administrators and developers, CIOs, CTOs, CISOs, and CFOs will want to purchase this book. Risk personnel, CROs, IT and Security Auditors as well as security researchers and journalists will also find this useful.


Quantum Computing

Quantum Computing

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2019-04-27

Total Pages: 273

ISBN-13: 030947969X

DOWNLOAD EBOOK

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.


Cryptography Apocalypse

Cryptography Apocalypse

Author: Roger A. Grimes

Publisher: John Wiley & Sons

Published: 2019-11-12

Total Pages: 272

ISBN-13: 1119618193

DOWNLOAD EBOOK

Will your organization be protected the day a quantum computer breaks encryption on the internet? Computer encryption is vital for protecting users, data, and infrastructure in the digital age. Using traditional computing, even common desktop encryption could take decades for specialized ‘crackers’ to break and government and infrastructure-grade encryption would take billions of times longer. In light of these facts, it may seem that today’s computer cryptography is a rock-solid way to safeguard everything from online passwords to the backbone of the entire internet. Unfortunately, many current cryptographic methods will soon be obsolete. In 2016, the National Institute of Standards and Technology (NIST) predicted that quantum computers will soon be able to break the most popular forms of public key cryptography. The encryption technologies we rely on every day—HTTPS, TLS, WiFi protection, VPNs, cryptocurrencies, PKI, digital certificates, smartcards, and most two-factor authentication—will be virtually useless. . . unless you prepare. Cryptography Apocalypse is a crucial resource for every IT and InfoSec professional for preparing for the coming quantum-computing revolution. Post-quantum crypto algorithms are already a reality, but implementation will take significant time and computing power. This practical guide helps IT leaders and implementers make the appropriate decisions today to meet the challenges of tomorrow. This important book: Gives a simple quantum mechanics primer Explains how quantum computing will break current cryptography Offers practical advice for preparing for a post-quantum world Presents the latest information on new cryptographic methods Describes the appropriate steps leaders must take to implement existing solutions to guard against quantum-computer security threats Cryptography Apocalypse: Preparing for the Day When Quantum Computing Breaks Today's Crypto is a must-have guide for anyone in the InfoSec world who needs to know if their security is ready for the day crypto break and how to fix it.


Real-World Cryptography

Real-World Cryptography

Author: David Wong

Publisher: Simon and Schuster

Published: 2021-10-19

Total Pages: 398

ISBN-13: 1638350841

DOWNLOAD EBOOK

"A staggeringly comprehensive review of the state of modern cryptography. Essential for anyone getting up to speed in information security." - Thomas Doylend, Green Rocket Security An all-practical guide to the cryptography behind common tools and protocols that will help you make excellent security choices for your systems and applications. In Real-World Cryptography, you will find: Best practices for using cryptography Diagrams and explanations of cryptographic algorithms Implementing digital signatures and zero-knowledge proofs Specialized hardware for attacks and highly adversarial environments Identifying and fixing bad practices Choosing the right cryptographic tool for any problem Real-World Cryptography reveals the cryptographic techniques that drive the security of web APIs, registering and logging in users, and even the blockchain. You’ll learn how these techniques power modern security, and how to apply them to your own projects. Alongside modern methods, the book also anticipates the future of cryptography, diving into emerging and cutting-edge advances such as cryptocurrencies, and post-quantum cryptography. All techniques are fully illustrated with diagrams and examples so you can easily see how to put them into practice. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Cryptography is the essential foundation of IT security. To stay ahead of the bad actors attacking your systems, you need to understand the tools, frameworks, and protocols that protect your networks and applications. This book introduces authentication, encryption, signatures, secret-keeping, and other cryptography concepts in plain language and beautiful illustrations. About the book Real-World Cryptography teaches practical techniques for day-to-day work as a developer, sysadmin, or security practitioner. There’s no complex math or jargon: Modern cryptography methods are explored through clever graphics and real-world use cases. You’ll learn building blocks like hash functions and signatures; cryptographic protocols like HTTPS and secure messaging; and cutting-edge advances like post-quantum cryptography and cryptocurrencies. This book is a joy to read—and it might just save your bacon the next time you’re targeted by an adversary after your data. What's inside Implementing digital signatures and zero-knowledge proofs Specialized hardware for attacks and highly adversarial environments Identifying and fixing bad practices Choosing the right cryptographic tool for any problem About the reader For cryptography beginners with no previous experience in the field. About the author David Wong is a cryptography engineer. He is an active contributor to internet standards including Transport Layer Security. Table of Contents PART 1 PRIMITIVES: THE INGREDIENTS OF CRYPTOGRAPHY 1 Introduction 2 Hash functions 3 Message authentication codes 4 Authenticated encryption 5 Key exchanges 6 Asymmetric encryption and hybrid encryption 7 Signatures and zero-knowledge proofs 8 Randomness and secrets PART 2 PROTOCOLS: THE RECIPES OF CRYPTOGRAPHY 9 Secure transport 10 End-to-end encryption 11 User authentication 12 Crypto as in cryptocurrency? 13 Hardware cryptography 14 Post-quantum cryptography 15 Is this it? Next-generation cryptography 16 When and where cryptography fails


Advancing Cyber Security Through Quantum Cryptography

Advancing Cyber Security Through Quantum Cryptography

Author: Chaubey, Nirbhay Kumar

Publisher: IGI Global

Published: 2024-10-23

Total Pages: 596

ISBN-13:

DOWNLOAD EBOOK

With the increasing power of computing, cybersecurity faces mounting threats, making digital systems more vulnerable to attacks. While modern cryptography used to be compelling, it now shows vulnerabilities against rapidly growing computational capabilities. Therefore, robust security solutions have become urgent in this precarious landscape. Advancing Cyber Security Through Quantum Cryptography is a book that can guide us through the turbulent waters of cybersecurity and quantum cryptography. It offers a panoramic view of current affairs, insightful analyses, illuminating case studies, and meticulous exploration of challenges and opportunities. Through this book, readers can gain knowledge and navigate this complex terrain. It delves into critical areas where quantum cryptography can fortify cybersecurity defenses, such as secure communications, e-commerce, and quantum internet.


Tutorials on the Foundations of Cryptography

Tutorials on the Foundations of Cryptography

Author: Yehuda Lindell

Publisher: Springer

Published: 2017-04-05

Total Pages: 461

ISBN-13: 331957048X

DOWNLOAD EBOOK

This is a graduate textbook of advanced tutorials on the theory of cryptography and computational complexity. In particular, the chapters explain aspects of garbled circuits, public-key cryptography, pseudorandom functions, one-way functions, homomorphic encryption, the simulation proof technique, and the complexity of differential privacy. Most chapters progress methodically through motivations, foundations, definitions, major results, issues surrounding feasibility, surveys of recent developments, and suggestions for further study. This book honors Professor Oded Goldreich, a pioneering scientist, educator, and mentor. Oded was instrumental in laying down the foundations of cryptography, and he inspired the contributing authors, Benny Applebaum, Boaz Barak, Andrej Bogdanov, Iftach Haitner, Shai Halevi, Yehuda Lindell, Alon Rosen, and Salil Vadhan, themselves leading researchers on the theory of cryptography and computational complexity. The book is appropriate for graduate tutorials and seminars, and for self-study by experienced researchers, assuming prior knowledge of the theory of cryptography.


The Hash Function BLAKE

The Hash Function BLAKE

Author: Jean-Philippe Aumasson

Publisher: Springer

Published: 2014-12-19

Total Pages: 237

ISBN-13: 3662447576

DOWNLOAD EBOOK

This is a comprehensive description of the cryptographic hash function BLAKE, one of the five final contenders in the NIST SHA3 competition, and of BLAKE2, an improved version popular among developers. It describes how BLAKE was designed and why BLAKE2 was developed, and it offers guidelines on implementing and using BLAKE, with a focus on software implementation. In the first two chapters, the authors offer a short introduction to cryptographic hashing, the SHA3 competition and BLAKE. They review applications of cryptographic hashing, they describe some basic notions such as security definitions and state-of-the-art collision search methods and they present SHA1, SHA2 and the SHA3 finalists. In the chapters that follow, the authors give a complete description of the four instances BLAKE-256, BLAKE-512, BLAKE-224 and BLAKE-384; they describe applications of BLAKE, including simple hashing with or without a salt and HMAC and PBKDF2 constructions; they review implementation techniques, from portable C and Python to AVR assembly and vectorized code using SIMD CPU instructions; they describe BLAKE’s properties with respect to hardware design for implementation in ASICs or FPGAs; they explain BLAKE's design rationale in detail, from NIST’s requirements to the choice of internal parameters; they summarize the known security properties of BLAKE and describe the best attacks on reduced or modified variants; and they present BLAKE2, the successor of BLAKE, starting with motivations and also covering its performance and security aspects. The book concludes with detailed test vectors, a reference portable C implementation of BLAKE, and a list of third-party software implementations of BLAKE and BLAKE2. The book is oriented towards practice – engineering and craftsmanship – rather than theory. It is suitable for developers, engineers and security professionals engaged with BLAKE and cryptographic hashing in general and for applied cryptography researchers and students who need a consolidated reference and a detailed description of the design process, or guidelines on how to design a cryptographic algorithm.