Quantum Cosmology

Quantum Cosmology

Author: Martin Bojowald

Publisher: Springer Science & Business Media

Published: 2011-07-15

Total Pages: 306

ISBN-13: 1441982752

DOWNLOAD EBOOK

Consequences of quantum gravity on grander scales are expected to be enormous: only such a theory can show how black holes really behave and where our universe came from. Applications of loop quantum gravity to cosmology have especially by now shed much light on cosmic evolution of a universe in a fundamental, microscopic description. Modern techniques are explained in this book which demonstrate how the universe could have come from a non-singular phase before the big bang, how equations for the evolution of structure can be derived, but also what fundamental limitations remain to our knowledge of the universe before the big bang. The following topics will be covered in this book: Hamiltonian cosmology: a general basic treatment of isotropy, perturbations and their role for observations; useful in general cosmology. Effective equations: an efficient way to evaluate equations of quantum gravity, which is also useful in other areas of physics where quantum theory is involved. Loop quantization: a new formalism for the atomic picture of space-time; usually presented at a sophisticated mathematical level, but evaluated here from an intuitive physical side. The book will start with physical motivations, rather than mathematical developments which is more common in other expositions of this field. All the required mathematical methods will be presented, but will not distract the reader from seeing the underlying physics. Simple but representative models will be presented first to show the basic features, which are then used to work upwards to a general description of quantum gravity and its applications in cosmology. This will make the book accessible to a more general physics readership.


Foundations of Quantum Cosmology

Foundations of Quantum Cosmology

Author: Martin Bojowald

Publisher:

Published: 2020-09-17

Total Pages: 346

ISBN-13: 9780750324588

DOWNLOAD EBOOK

This is the first book to lay the physical foundations of quantum cosmology, complete with an introduction to space-time physics, quantum theory, and the main approaches to quantum gravity. It is an essential guide for researchers in quantum gravity and astrophysicists interested in fundamental aspects of cosmology.


Classical and Quantum Cosmology

Classical and Quantum Cosmology

Author: Gianluca Calcagni

Publisher: Springer

Published: 2017-01-06

Total Pages: 854

ISBN-13: 3319411276

DOWNLOAD EBOOK

This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography of about 3500 items, will serve as a valuable reference for lecturers and researchers.


Quantum Gravity and Quantum Cosmology

Quantum Gravity and Quantum Cosmology

Author: Gianluca Calcagni

Publisher: Springer

Published: 2012-10-31

Total Pages: 402

ISBN-13: 3642330363

DOWNLOAD EBOOK

Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. Edited and authored by leading researchers in the field and cast into the form of a multi-author textbook at postgraduate level, this volume will be of benefit to all postgraduate students and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research.


Gravity, Gauge Theories and Quantum Cosmology

Gravity, Gauge Theories and Quantum Cosmology

Author: J.V. Narlikar

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 477

ISBN-13: 9400945086

DOWNLOAD EBOOK

For several decades since its inception, Einstein's general theory of relativity stood somewhat aloof from the rest of physics. Paradoxically, the attributes which normally boost a physical theory - namely, its perfection as a theoreti cal framework and the extraordinary intellectual achievement underlying i- prevented the general theory from being assimilated in the mainstream of physics. It was as if theoreticians hesitated to tamper with something that is manifestly so beautiful. Happily, two developments in the 1970s have narrowed the gap. In 1974 Stephen Hawking arrived at the remarkable result that black holes radiate after all. And in the second half of the decade, particle physicists discovered that the only scenario for applying their grand unified theories was offered by the very early phase in the history of the Big Bang universe. In both cases, it was necessary to discuss the ideas of quantum field theory in the background of curved spacetime that is basic to general relativity. This is, however, only half the total story. If gravity is to be brought into the general fold of theoretical physics we have to know how to quantize it. To date this has proved a formidable task although most physicists would agree that, as in the case of grand unified theories, quantum gravity will have applications to cosmology, in the very early stages of the Big Bang universe. In fact, the present picture of the Big Bang universe necessarily forces us to think of quantum cosmology.


Quantum Cosmology

Quantum Cosmology

Author: Remo Ruffini

Publisher: World Scientific

Published: 1987

Total Pages: 358

ISBN-13: 9789971503123

DOWNLOAD EBOOK

This detailed survey comprises reprints on subjects related to the development of quantum cosmology. As an introduction, an overview is included.


Quantum Gravity, Quantum Cosmology and Lorentzian Geometries

Quantum Gravity, Quantum Cosmology and Lorentzian Geometries

Author: Giampiero Esposito

Publisher: Springer Science & Business Media

Published: 1994-01-28

Total Pages: 364

ISBN-13: 3540575219

DOWNLOAD EBOOK

The first aim of this book is to describe recent work on the problem of boundary conditions in one-loop quantum cosmology. The motivation is to understand whether supersymmetric theories are one-loop finite in the presence of boundaries. The second aim of the book is to present a recent, entirely new study of the singularity problem for space-times with torsion. The book is written in self-contained form. In many cases problems have been initially formulated in the simplest possible way, and finally presented and solved at increasing levels of complexity. Readers will find here a detailed and updated study of quantum cosmology, its motivation, and application to perturbative quantum gravity. Moreover, this is the first book which enables the reader to learn techniques used in classical gravity and quantum cosmology. The second edition adds new material to both the text and the bibliography.


Quantum Cosmology

Quantum Cosmology

Author: Martin Bojowald

Publisher: Springer

Published: 2011-07-15

Total Pages: 306

ISBN-13: 1441982760

DOWNLOAD EBOOK

Consequences of quantum gravity on grander scales are expected to be enormous: only such a theory can show how black holes really behave and where our universe came from. Applications of loop quantum gravity to cosmology have especially by now shed much light on cosmic evolution of a universe in a fundamental, microscopic description. Modern techniques are explained in this book which demonstrate how the universe could have come from a non-singular phase before the big bang, how equations for the evolution of structure can be derived, but also what fundamental limitations remain to our knowledge of the universe before the big bang. The following topics will be covered in this book: Hamiltonian cosmology: a general basic treatment of isotropy, perturbations and their role for observations; useful in general cosmology. Effective equations: an efficient way to evaluate equations of quantum gravity, which is also useful in other areas of physics where quantum theory is involved. Loop quantization: a new formalism for the atomic picture of space-time; usually presented at a sophisticated mathematical level, but evaluated here from an intuitive physical side. The book will start with physical motivations, rather than mathematical developments which is more common in other expositions of this field. All the required mathematical methods will be presented, but will not distract the reader from seeing the underlying physics. Simple but representative models will be presented first to show the basic features, which are then used to work upwards to a general description of quantum gravity and its applications in cosmology. This will make the book accessible to a more general physics readership.


Quantum Gravity

Quantum Gravity

Author: Claus Kiefer

Publisher: Oxford University Press

Published: 2012-04-05

Total Pages: 406

ISBN-13: 0199585202

DOWNLOAD EBOOK

Quantum theory and Einstein's theory of relativity are at the centre of modern theoretical physics, yet, the consistent unification of both theories is still elusive. This book offers an up-to-date introduction into the attempts to construct a unified theory of "quantum gravity".


Gravity, Gauge Theories and Quantum Cosmology

Gravity, Gauge Theories and Quantum Cosmology

Author: J.V. Narlikar

Publisher: Springer Science & Business Media

Published: 1986-07-31

Total Pages: 498

ISBN-13: 9789027719485

DOWNLOAD EBOOK

For several decades since its inception, Einstein's general theory of relativity stood somewhat aloof from the rest of physics. Paradoxically, the attributes which normally boost a physical theory - namely, its perfection as a theoreti cal framework and the extraordinary intellectual achievement underlying i- prevented the general theory from being assimilated in the mainstream of physics. It was as if theoreticians hesitated to tamper with something that is manifestly so beautiful. Happily, two developments in the 1970s have narrowed the gap. In 1974 Stephen Hawking arrived at the remarkable result that black holes radiate after all. And in the second half of the decade, particle physicists discovered that the only scenario for applying their grand unified theories was offered by the very early phase in the history of the Big Bang universe. In both cases, it was necessary to discuss the ideas of quantum field theory in the background of curved spacetime that is basic to general relativity. This is, however, only half the total story. If gravity is to be brought into the general fold of theoretical physics we have to know how to quantize it. To date this has proved a formidable task although most physicists would agree that, as in the case of grand unified theories, quantum gravity will have applications to cosmology, in the very early stages of the Big Bang universe. In fact, the present picture of the Big Bang universe necessarily forces us to think of quantum cosmology.