Potential Energy Surfaces and Dynamics Calculations

Potential Energy Surfaces and Dynamics Calculations

Author: Donald Truhlar

Publisher: Springer

Published: 1981-08

Total Pages: 878

ISBN-13:

DOWNLOAD EBOOK

The present volume is concerned with two of the central questions of chemical dynamics. What do we know about the energies of interaction of atoms and molecules with each other and with solid surfaces? How can such interaction energies be used to understand and make quantitative predictions about dynamical processes like scattering, energy transfer, and chemical reactions? It is becoming clearly recognized that the computer is leading to rapid progress in answering these questions. The computer allows probing dynamical mechanisms in fine detail and often allows us to answer questions that cannot be addressed with current experimental techniques. As we enter the 1980's, not only are more powerful and faster computers being used, but techniques and methods have been honed to a state where exciting and reliable data are being generated on a variety of systems at an unprecedented pace. The present volume presents a collection of work that illustrates the capabilities and some of the successes of this kind of computer-assisted research. In a 1978 Chemical Society Report, Frey and Walsh pointed out that "it is extremely doubtful if a calculated energy of activation for any unimolecular decomposition can replace an experimental deter mination. " However they also recorded that they "believe[d] that some of the elaborate calculations being performed at present do suggest that we may be approaching a time when a choice between reaction mechanisms will be helped by such [computational] work.


Exploration on Quantum Chemical Potential Energy Surfaces

Exploration on Quantum Chemical Potential Energy Surfaces

Author: Koichi Ohno

Publisher: Royal Society of Chemistry

Published: 2022-12-12

Total Pages: 255

ISBN-13: 1839167750

DOWNLOAD EBOOK

Written chemical formulas, such as C2H6O, can tell us the constituent atoms a molecule contains but they cannot differentiate between the possible geometrical arrangements (isomers) of these models. Yet the chemical properties of different isomers can vary hugely. Therefore, to understand the world of chemistry we need to ask what kind of isomers can be produced from a given atomic composition, how are isomers converted into each other, how do they decompose into smaller pieces, and how can they be made from smaller pieces? The answers to these questions will help us to discover new chemistry and new molecules. A potential energy surface (PES) describes a system, such as a molecule, based on geometrical parameters. The mathematical properties of the PES can be used to calculate probable isomer structures as well as how they are formed and how they might behave. Exploration on Quantum Chemical Potential Energy Surfaces focuses on the PES search based on quantum chemical calculations. It describes how to explore the chemical world on PES, discusses fundamental methods and specific techniques developed for efficient exploration on PES, and demonstrates several examples of the PES search for chemical structures and reaction routes.


Potential Energy Surfaces

Potential Energy Surfaces

Author: Alexander F. Sax

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 242

ISBN-13: 3642468799

DOWNLOAD EBOOK

Potential Energy Surfaces is a collection of lectures given at the 1996 Mariapfarr Workshop in Theoretical Chemistry, organized by Alexander F. Sax. The Mariapfarr Workshops' aim is to discuss in-depth topics in Theoretical Chemistry. The target group of these workshops is graduate students and postdocs.


Quantum chemical studies of deposition and catalytic surface reactions

Quantum chemical studies of deposition and catalytic surface reactions

Author: Emil Kalered

Publisher: Linköping University Electronic Press

Published: 2018-06-19

Total Pages: 73

ISBN-13: 9176853330

DOWNLOAD EBOOK

Quantum chemical calculations have been used to model chemical reactions in epitaxial growth of silicon carbide by chemical vapor deposition (CVD) processes and to study heterogeneous catalytic reactions for methanol synthesis. CVD is a common method to produce high-quality materials and e.g. thin films in the semiconductor industry, and one of the many usages of methanol is as a promising future renewable and sustainable energy carrier. To optimize the chemical processes it is essential to understand the reaction mechanisms. A comprehensive theoretical model for the process is therefore desired in order to be able to explore various variables that are difficult to investigate in situ. In this thesis reaction paths and reaction energies are computed using quantum chemical calculations. The quantum-chemical results can subsequently be used as input for thermodynamic, kinetic and computational fluid dynamics modelling in order to obtain data directly comparable with the experimental observations. For the CVD process, the effect of halogen addition to the gas mixture is studied by modelling the adsorption and diffusion of SiH2, SiCl2 and SiBr2 on the (0001?) 4H-SiC surface. SiH2 was found to bind strongest to the surface and SiBr2 binds slightly stronger than the SiCl2 molecule. The diffusion barrier is shown to be lower for SiH2 than for SiBr2 and SiCl2 which have similar barriers. SiBr2 and SiCl2 are found to have similar physisorption energies and bind stronger than the SiH2 molecule. Gibbs free-energy calculations also indicate that the SiC surface is not fully hydrogen terminated at CVD conditions since missing-neighboring pair of surface hydrogens is found to be common. Calculations for the (0001) surface show that SiCl, SiCl2, SiHCl, SiH, and SiH2 likely adsorb on a methylene site, but the processes are thermodynamically less favorable than their reverse reactions. However, the adsorbed products may be stabilized by subsequent surface reactions to form a larger structure. The formation of these larger structures is found to be fast enough to compete with the desorption processes. Also the Gibbs free energies for adsorption of Si atoms, SiX, SiX2, and SiHX where X is F or Br are presented. Adsorption of Si atoms is shown to be the most thermodynamically favorable reaction followed by SiX, SiHX, and SiX2, X being a halide. The results in this study suggest that the major Si contributors in the SiC–CVD process are Si atoms, SiX and SiH. Methanol can be synthesized from gaseous carbon dioxide and hydrogen using solid metal-metal oxide mixtures acting as heterogeneous catalysts. Since a large surface area of the catalyst enhances the speed of the heterogeneous reaction, the use of nanoparticles (NP) is expected to be advantageous due to the NPs’ large area to surface ratio. The plasma-induced creation of copper NPs is investigated. One important element during particle growth is the charging process where the variation of the work function (W) with particle size is a key quantity, and the variation becomes increasingly pronounced at smaller NP sizes. The work functions are computed for a set of NP charge numbers, sizes and shapes, using copper as a case study. A derived analytical expression for W is shown to give quite accurate estimates provided that the diameter of the NP is larger than about a nanometer and that the NP has relaxed to close to a spherical shape. For smaller sizes W deviates from the approximative expression, and also depends on the charge number. Some consequences of these results for NP charging process are outlined. Key reaction steps in the methanol synthesis reaction mechanism using a Cu/ZrO2 nanoparticle catalyst is investigated. Two different reaction paths for conversion of CO2 to CO is studied. The two paths result in the same complete reaction 2 CO2 ? 2 CO + O2 where ZrO2 (s) acts as a catalyst. The highest activation energies are significantly lower compared to that of the gas phase reaction. The presence of oxygen vacancies at the surface appear to be decisive for the catalytic process to be effective. Studies of the reaction kinetics show that when oxygen vacancies are present on the ZrO2 surface, carbon monoxide is produced within a microsecond. The IR spectra of CO2 and H2 interacting with ZrO2 and Cu under conditions that correspond to the catalyzed CH3OH production process is also studied experimentally and compared to results from the theoretical computations. Surface structures and gas-phase molecules are identified through the spectral lines by matching them to specific vibrational modes from the literature and from the new computational results. Several surface structures are verified and can be used to pin point surface structures in the reaction path. This gives important information that help decipher how the reaction mechanism of the CO2 conversion and ultimately may aid to improve the methanol synthesis process.


Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules

Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules

Author: R.J. Bartlett

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 512

ISBN-13: 9400954743

DOWNLOAD EBOOK

At the American Chemical Society meeting in Philadelphia, Pennsylvania, U.S.A., a symposium was organized entitled, "Comparison of Ab Initio Quantum Chemistry with Experiment: State-of-the-Art." The intent of the symposium was to bring together forefront experimen talists, who perform the types of clean, penetrating experiments that are amenable to thorough theoretical analysis, with inventive theore ticians who have developed high accuracy ab initio methods that are capable of competing favorably with experiment, to assess the current applicability of theoretical methods in chemistry. Contributions from many of those speakers (see Appendix A) plus others selected for their expertise in the subject are contained in this volume. Such a book is especially timely, since with the recent develop ment of new, more accurate and powerful ab initio methods coupled with the exceptional progress achieved in computational equipment, ab initio quantum chemistry is now often able to offer a third voice to resolve experimental discrepancies, assist essentially in the interpre tation of experiments, and frequently, provide quantitatively accurate results for molecular properties that are not available from experiment.


Potential Energy Hypersurfaces

Potential Energy Hypersurfaces

Author: Paul G. Mezey

Publisher: Elsevier Publishing Company

Published: 1987

Total Pages: 564

ISBN-13:

DOWNLOAD EBOOK

The importance of the potential surface model has led naturally to a large number of studies on the subject, where the emphasis has usually been placed on lower dimensional problems, such as the reaction dynamics of diatomic to four-atom systems, or conformational problems restricted to few internal rotations. The purposes and methods of this book are, however, somewhat different from those of most studies on potential surface problems. The emphasis here is placed on those fundamental properties of potential energy hypersurfaces that are general for higher dimensions, that is, for larger molecules. The study of these properties requires some of the tools of global analysis that are not among the routine mathematical techniques of quantum chemists: topology, homotopy, and homology. This book provides the reader with an introduction to the fundamentals and to some of the more recent developments in the theory of potential energy hypersurfaces. The text is fairly self-contained. It requires no previous mathematical knowledge from the reader beyond that needed in an undergraduate quantum chemistry course.


Nanofabrication Using Focused Ion and Electron Beams

Nanofabrication Using Focused Ion and Electron Beams

Author: Ivo Utke

Publisher: OUP USA

Published: 2012-05

Total Pages: 830

ISBN-13: 0199734216

DOWNLOAD EBOOK

This book comprehensively reviews the achievements and potentials of a minimally invasive, three-dimensional, and maskless surface structuring technique operating at nanometer scale by using the interaction of focused ion and electron beams (FIB/FEB) with surfaces and injected molecules.