Quadratic and Hermitian Forms

Quadratic and Hermitian Forms

Author: W. Scharlau

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 431

ISBN-13: 3642699715

DOWNLOAD EBOOK

For a long time - at least from Fermat to Minkowski - the theory of quadratic forms was a part of number theory. Much of the best work of the great number theorists of the eighteenth and nineteenth century was concerned with problems about quadratic forms. On the basis of their work, Minkowski, Siegel, Hasse, Eichler and many others crea ted the impressive "arithmetic" theory of quadratic forms, which has been the object of the well-known books by Bachmann (1898/1923), Eichler (1952), and O'Meara (1963). Parallel to this development the ideas of abstract algebra and abstract linear algebra introduced by Dedekind, Frobenius, E. Noether and Artin led to today's structural mathematics with its emphasis on classification problems and general structure theorems. On the basis of both - the number theory of quadratic forms and the ideas of modern algebra - Witt opened, in 1937, a new chapter in the theory of quadratic forms. His most fruitful idea was to consider not single "individual" quadratic forms but rather the entity of all forms over a fixed ground field and to construct from this an algebra ic object. This object - the Witt ring - then became the principal object of the entire theory. Thirty years later Pfister demonstrated the significance of this approach by his celebrated structure theorems.


Quadratic and Hermitian Forms over Rings

Quadratic and Hermitian Forms over Rings

Author: Max-Albert Knus

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 536

ISBN-13: 3642754015

DOWNLOAD EBOOK

From its birth (in Babylon?) till 1936 the theory of quadratic forms dealt almost exclusively with forms over the real field, the complex field or the ring of integers. Only as late as 1937 were the foundations of a theory over an arbitrary field laid. This was in a famous paper by Ernst Witt. Still too early, apparently, because it took another 25 years for the ideas of Witt to be pursued, notably by Albrecht Pfister, and expanded into a full branch of algebra. Around 1960 the development of algebraic topology and algebraic K-theory led to the study of quadratic forms over commutative rings and hermitian forms over rings with involutions. Not surprisingly, in this more general setting, algebraic K-theory plays the role that linear algebra plays in the case of fields. This book exposes the theory of quadratic and hermitian forms over rings in a very general setting. It avoids, as far as possible, any restriction on the characteristic and takes full advantage of the functorial aspects of the theory. The advantage of doing so is not only aesthetical: on the one hand, some classical proofs gain in simplicity and transparency, the most notable examples being the results on low-dimensional spinor groups; on the other hand new results are obtained, which went unnoticed even for fields, as in the case of involutions on 16-dimensional central simple algebras. The first chapter gives an introduction to the basic definitions and properties of hermitian forms which are used throughout the book.


Quadratic and Hermitian Forms

Quadratic and Hermitian Forms

Author: McMaster University

Publisher: American Mathematical Soc.

Published: 1984

Total Pages: 362

ISBN-13: 9780821860083

DOWNLOAD EBOOK

Contains the proceedings of the 1983 Seminar on Quadratic and Hermitian Forms held at McMaster University, July 1983. Between 1945 and 1965, most of the work in quadratic (and hermitian) forms took place in arithmetic theory (M Eichler, M Kneser, O T O'Meara).


Quaternion Algebras

Quaternion Algebras

Author: John Voight

Publisher: Springer Nature

Published: 2021-06-28

Total Pages: 877

ISBN-13: 3030566943

DOWNLOAD EBOOK

This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.


Quadratic Forms and Their Applications

Quadratic Forms and Their Applications

Author: Eva Bayer-Fluckiger

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 330

ISBN-13: 0821827790

DOWNLOAD EBOOK

This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.


Symmetric Bilinear Forms

Symmetric Bilinear Forms

Author: John Milnor

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 155

ISBN-13: 3642883303

DOWNLOAD EBOOK

The theory cf quadratic forms and the intimately related theory of sym metrie bilinear forms have a lang and rich his tory, highlighted by the work of Legendre, Gauss, Minkowski, and Hasse. (Compare [Dickson] and [Bourbaki, 24, p. 185].) Our exposition will concentrate on the rela tively recent developments which begin with and are inspired by Witt's 1937 paper "Theorie der quadratischen Formen in beliebigen Körpern." We will be particularly interested in the work of A. Pfister and M. Knebusch. However, some older material will be described, particularly in Chapter II. The presentation is based on lectures by Milnor at the Institute for Ad vanced Study, and at Haverford College under the Phillips Lecture Pro gram, during the Fall of 1970, as weIl as Iectures at Princeton University il1 1966. We want to thank J. Cunningham, M. Knebusch, M. Kneser, A. Rosenberg, W. Scharlau and J.-P. Serre for helpful suggestions and corrections. Prerequisites. The reader should be familiar with the rudiments of algebra., incJuding for example the concept of tensor product for mo dules over a commutative ring. A few individual sections will require quite a bit more. The logical relationship between the various chapters can be roughly described by the diagram below. There are also five appendices, largely self-contained, which treat special topics. I. Arbitrary commutative rings I H. The ring of V. Miscellaneous IIl. Fields integers examples IV. Dedekind domains Contents Chapter r. Basie Coneepts ...


Quadratic Forms, Linear Algebraic Groups, and Cohomology

Quadratic Forms, Linear Algebraic Groups, and Cohomology

Author: Skip Garibaldi

Publisher: Springer Science & Business Media

Published: 2010-07-16

Total Pages: 344

ISBN-13: 1441962115

DOWNLOAD EBOOK

Developments in Mathematics is a book series devoted to all areas of mathematics, pure and applied. The series emphasizes research monographs describing the latest advances. Edited volumes that focus on areas that have seen dramatic progress, or are of special interest, are encouraged as well.


The Algebraic and Geometric Theory of Quadratic Forms

The Algebraic and Geometric Theory of Quadratic Forms

Author: Richard S. Elman

Publisher: American Mathematical Soc.

Published: 2008-07-15

Total Pages: 456

ISBN-13: 9780821873229

DOWNLOAD EBOOK

This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages of the development of the theory. Assuming only a basic course in algebraic geometry, Part II presents the necessary additional topics from algebraic geometry including the theory of Chow groups, Chow motives, and Steenrod operations. These topics are used in Part III to develop a modern geometric theory of quadratic forms.


Algebraic Theories

Algebraic Theories

Author: Leonard Dickson

Publisher: Courier Corporation

Published: 2014-03-05

Total Pages: 241

ISBN-13: 048615520X

DOWNLOAD EBOOK

This in-depth introduction to classical topics in higher algebra provides rigorous, detailed proofs for its explorations of some of mathematics' most significant concepts, including matrices, invariants, and groups. Algebraic Theories studies all of the important theories; its extensive offerings range from the foundations of higher algebra and the Galois theory of algebraic equations to finite linear groups (including Klein's "icosahedron" and the theory of equations of the fifth degree) and algebraic invariants. The full treatment includes matrices, linear transformations, elementary divisors and invariant factors, and quadratic, bilinear, and Hermitian forms, both singly and in pairs. The results are classical, with due attention to issues of rationality. Elementary divisors and invariant factors receive simple, natural introductions in connection with the classical form and a rational, canonical form of linear transformations. All topics are developed with a remarkable lucidity and discussed in close connection with their most frequent mathematical applications.