This volume presents a selection of current developments in quantum chromodynamics, with some emphasis on the borderline between the perturbative and the nonperturbative regime. The topics include: effective QCD, sum rules, vacuum structure, confinement, bound states, quark masses, lattice QCD, deconfinement, deep inelastic scattering and structure functions, strong coupling constant, radiative corrections.
Quantum field theory was invented to deal simultaneously with special relativity and quantum mechanics, the two greatest discoveries of early twentieth-century physics, but it has become increasingly important to many areas of physics including quantum hall physics, surface growth, string theory, D-branes and quantum gravity as well as condensed-matter and high-energy applications and particle-physics. This important book presents leading-edge research from throughout the world.
'What makes this collection unusual and refreshing is that it is not the more common ‘Festschrift’ written by specialists for specialists, but a broad set of topical summaries and analyses addressed to a wide readership of particle physicists. Inevitably, some of the sections are more advanced in their treatment than others, but most of the material will be accessible and helpful to researchers at all levels, and in particular to those working on experiments at CERN, where Altarelli spent many years in the theory group. It is hard to do justice to the varied contents of this excellent collection … I can only recommend that anyone involved in particle research should turn to the web for a full description of the richness of material that is included here … There is something here for everyone, and much for most. I’m sure Altarelli would have been pleased with that! The Editors are to be complimented for their initiative in making this unique volume possible.'Contemporary PhysicsGuido Altarelli was a leading figure in 20th century particle physics. His scientific contributions and leadership played a key role in the development of the Standard Model of fundamental interactions, as well as the current search for new physics beyond it, both at and beyond CERN. This book is a collection of original contributions, at the cutting edge of scientific research, by some of the leading theoretical and experimental high-energy physicists currently in the field. These were inspired by Guido's ideas, whether directly or indirectly. This book is ideal for researchers looking to keep up with the latest developments in high-energy physics.
This book contains articles by experts on the plasma phase of quantum chromodynamics, and the plasma phase of electroweak interactions. The former plasma phase is being tested at RHIC (Brookhaven), and has been tested at CERN. Both plasmas have played roles in the development of the Universe since the Big Bang. A third topic is that of the high density colour superconductive state of matter, which may be present in the core of neutron stars.
This exhaustive survey is the result of a four year effort by many leading researchers in the field to produce both a readable introduction and a yardstick for the many upcoming experiments using heavy ion collisions to examine the properties of nuclear matter. The books falls naturally into five large parts, first examining the bulk properties of strongly interacting matter, including its equation of state and phase structure. Part II discusses elementary hadronic excitations of nuclear matter, Part III addresses the concepts and models regarding the space-time dynamics of nuclear collision experiments, Part IV collects the observables from past and current high-energy heavy-ion facilities in the context of the theoretical predictions specific to compressed baryonic matter. Part V finally gives a brief description of the experimental concepts. The book explicitly addresses everyone working or planning to enter the field of high-energy nuclear physics.
The problem of quark confinement is one of the classic unsolved problems of particle physics and is fundamental to our understanding of the physics of the strong interaction and the behaviour of non-Abelian gauge theories in general. The confinement problem is also are area in which concepts from topology and techniques of computational physics both find important applications. This volume contains a snapshot of current research in this field as of January 2002. Particular emphasis is placed on the role of topological field configurations such as centre vortices and monopoles in proposed confinement mechanisms. Other topics covered include colour superconductivity, instantons and chiral symmetry breaking, matrix models and the construction of chiral gauge theories. Readership: Research scientists and graduate students of high energy physics and nuclear physics.
The proceedings of DIS 2001 present the most updated status of deep inelastic scattering (DIS) physics. Topics like structure function measurements and phenomenology, QCD studies in DIS and photoproduction, spin physics and diffractive interactions are reviewed in detail, with emphasis on those studies that push the test of QCD and the Standard Model to the limits of their present range of validity, towards both the very high and the very low four-momentum transfers in the lepton-proton scattering. Moreover, this workshop coincided with the transition between the first period of experimentation at the HERA ep collider at DESY and the start of the updated HERA II operation — allowing a review of what has been learned up to now and a discussion on the main future directions of research in this field.
The main topic of the conference was the physics of strong interaction and the understanding of how quarks form hadrons, which are part of the atomic nucleus. The proceedings give a comprehensive overview of the present status of the physics of hadrons. Topics include: mesons, baryons, scalars, exotics, heavy quarks, theoretical concepts, hadrons in matter, and reactions. The timing of the conference was very fortunate as many new and surprising results appeared in the months before its start. The highlights were the discussions about the nature of the recently discovered arrow states.