Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Visualize and build deep learning models with 3D data using PyTorch3D and other Python frameworks to conquer real-world application challenges with ease Key FeaturesUnderstand 3D data processing with rendering, PyTorch optimization, and heterogeneous batchingImplement differentiable rendering concepts with practical examplesDiscover how you can ease your work with the latest 3D deep learning techniques using PyTorch3DBook Description With this hands-on guide to 3D deep learning, developers working with 3D computer vision will be able to put their knowledge to work and get up and running in no time. Complete with step-by-step explanations of essential concepts and practical examples, this book lets you explore and gain a thorough understanding of state-of-the-art 3D deep learning. You'll see how to use PyTorch3D for basic 3D mesh and point cloud data processing, including loading and saving ply and obj files, projecting 3D points into camera coordination using perspective camera models or orthographic camera models, rendering point clouds and meshes to images, and much more. As you implement some of the latest 3D deep learning algorithms, such as differential rendering, Nerf, synsin, and mesh RCNN, you'll realize how coding for these deep learning models becomes easier using the PyTorch3D library. By the end of this deep learning book, you'll be ready to implement your own 3D deep learning models confidently. What you will learnDevelop 3D computer vision models for interacting with the environmentGet to grips with 3D data handling with point clouds, meshes, ply, and obj file formatWork with 3D geometry, camera models, and coordination and convert between themUnderstand concepts of rendering, shading, and more with easeImplement differential rendering for many 3D deep learning modelsAdvanced state-of-the-art 3D deep learning models like Nerf, synsin, mesh RCNNWho this book is for This book is for beginner to intermediate-level machine learning practitioners, data scientists, ML engineers, and DL engineers who are looking to become well-versed with computer vision techniques using 3D data.
"A breakthrough in machine learning would be worth ten Microsofts." -Bill Gates Despite being one of the hottest disciplines in the Tech industry right now, Artificial Intelligence and Machine Learning remain a little elusive to most.The erratic availability of resources online makes it extremely challenging for us to delve deeper into these fields. Especially when gearing up for job interviews, most of us are at a loss due to the unavailability of a complete and uncondensed source of learning. Cracking the Machine Learning Interview Equips you with 225 of the best Machine Learning problems along with their solutions. Requires only a basic knowledge of fundamental mathematical and statistical concepts. Assists in learning the intricacies underlying Machine Learning concepts and algorithms suited to specific problems. Uniquely provides a manifold understanding of both statistical foundations and applied programming models for solving problems. Discusses key points and concrete tips for approaching real life system design problems and imparts the ability to apply them to your day to day work. This book covers all the major topics within Machine Learning which are frequently asked in the Interviews. These include: Supervised and Unsupervised Learning Classification and Regression Decision Trees Ensembles K-Nearest Neighbors Logistic Regression Support Vector Machines Neural Networks Regularization Clustering Dimensionality Reduction Feature Extraction Feature Engineering Model Evaluation Natural Language Processing Real life system design problems Mathematics and Statistics behind the Machine Learning Algorithms Various distributions and statistical tests This book can be used by students and professionals alike. It has been drafted in a way to benefit both, novices as well as individuals with substantial experience in Machine Learning. Following Cracking The Machine Learning Interview diligently would equip you to face any Machine Learning Interview.
In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display image histogram. It is a graphical representation that displays the distribution of pixel intensities in an image. It provides information about the frequency of occurrence of each intensity level in the image. The histogram allows us to understand the overall brightness or contrast of the image and can reveal important characteristics such as dynamic range, exposure, and the presence of certain image features. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. The MNIST dataset is a widely used dataset in machine learning and computer vision, particularly for image classification tasks. It consists of a collection of handwritten digits from zero to nine, where each digit is represented as a 28x28 grayscale image. The dataset was created by collecting handwriting samples from various individuals and then preprocessing them to standardize the format. Each image in the dataset represents a single digit and is labeled with the corresponding digit it represents. The labels range from 0 to 9, indicating the true value of the handwritten digit. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset. Following are the steps taken in this chapter: Dataset Exploration: Explore the Brain Image MRI dataset from Kaggle. Describe the structure of the dataset, the different classes (tumor vs. non-tumor), and any preprocessing steps required; Data Preprocessing: Preprocess the dataset to prepare it for model training. This may include tasks such as resizing images, normalizing pixel values, splitting data into training and testing sets, and creating labels; Model Building: Use TensorFlow and Keras to build a deep learning model for brain tumor detection. Choose an appropriate architecture, such as a convolutional neural network (CNN), and configure the model layers; Model Training: Train the brain tumor detection model using the preprocessed dataset. Specify the loss function, optimizer, and evaluation metrics. Monitor the training process and visualize the training/validation accuracy and loss over epochs; Model Evaluation: Evaluate the trained model on the testing dataset. Calculate metrics such as accuracy, precision, recall, and F1 score to assess the model's performance; Prediction and Visualization: Use the trained model to make predictions on new MRI images. Visualize the predicted results alongside the ground truth labels to demonstrate the effectiveness of the model. Finally, you will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle using MobileNetV2 and CNN models. Following are the steps taken in this chapter: Data Exploration: Load the dataset using Pandas, perform exploratory data analysis (EDA) to gain insights into the data, and visualize the distribution of gender classes; Data Preprocessing: Preprocess the dataset by performing necessary transformations, such as resizing images, converting labels to numerical format, and splitting the data into training, validation, and test sets; Model Building: Use TensorFlow and Keras to build a gender classification model. Define the architecture of the model, compile it with appropriate loss and optimization functions, and summarize the model's structure; Model Training: Train the model on the training set, monitor its performance on the validation set, and tune hyperparameters if necessary. Visualize the training history to analyze the model's learning progress; Model Evaluation: Evaluate the trained model's performance on the test set using various metrics such as accuracy, precision, recall, and F1 score. Generate a classification report and a confusion matrix to assess the model's performance in detail; Prediction and Visualization: Use the trained model to make gender predictions on new, unseen data. Visualize a few sample predictions along with the corresponding images. Finally, you will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset using CNN model. The FER2013 dataset contains facial images categorized into seven different emotions: anger, disgust, fear, happiness, sadness, surprise, and neutral. To perform facial expression recognition using this dataset, you would typically follow these steps; Data Preprocessing: Load and preprocess the dataset. This may involve resizing the images, converting them to grayscale, and normalizing the pixel values; Data Split: Split the dataset into training, validation, and testing sets. The training set is used to train the model, the validation set is used to tune hyperparameters and evaluate the model's performance during training, and the testing set is used to assess the final model's accuracy; Model Building: Build a deep learning model using TensorFlow and Keras. This typically involves defining the architecture of the model, selecting appropriate layers (such as convolutional layers, pooling layers, and fully connected layers), and specifying the activation functions and loss functions; Model Training: Train the model using the training set. This involves feeding the training images through the model, calculating the loss, and updating the model's parameters using optimization techniques like backpropagation and gradient descent; Model Evaluation: Evaluate the trained model's performance using the validation set. This can include calculating metrics such as accuracy, precision, recall, and F1 score to assess how well the model is performing; Model Testing: Assess the model's accuracy and performance on the testing set, which contains unseen data. This step helps determine how well the model generalizes to new, unseen facial expressions; Prediction: Use the trained model to make predictions on new images or live video streams. This involves detecting faces in the images using OpenCV, extracting facial features, and feeding the processed images into the model for prediction. Then, you will also build a GUI application for this purpose.
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
Easily Boost Your Skills In Python Programming & Become A Master In Deep Learning & Data Analysis! 💻 Python is an interpreted, high-level, general-purpose programming language that emphasizes code readability with its notable use of significant whitespace. What makes Python so popular in the IT industry is that it uses an object-oriented approach, which enables programmers to write clear, logical code for all types of projects, whether big or small. Hone your Python Programming skills and gain a sharp edge over other programmers the EASIEST way possible... with this practical beginner’s guide! In his 3-in-1 Python crash course for beginners, Anthony Adams gives novices like you simple, yet efficient tips and tricks to become a MASTER in Python coding for artificial intelligence, neural networks, machine learning, and data science/analysis! Here’s what you’ll get: ✅ Highly innovative ways to boost your understanding of Python programming, data analysis, and machine learning ✅ Quickly and effectively stop fraud with machine learning ✅ Practical and efficient exercises that make understanding Python quick & easy And so much more! As a beginner, you might feel a bit intimidated by the complexities of coding. Add the fact that most Python Programming crash course guides make learning harder than it has to be! ✓ With the help of this 3-in-1 guide, you will be given carefully sequenced Python Programming lessons that’ll maximize your understanding, and equip you with all the skills for real-life application! ★ Thrive in the IT industry with this comprehensive Python Programming crash course! ★ Scroll up, Click on “Buy Now”, and Start Learning Today!
Discover how TPOT can be used to handle automation in machine learning and explore the different types of tasks that TPOT can automate Key FeaturesUnderstand parallelism and how to achieve it in Python.Learn how to use neurons, layers, and activation functions and structure an artificial neural network.Tune TPOT models to ensure optimum performance on previously unseen data.Book Description The automation of machine learning tasks allows developers more time to focus on the usability and reactivity of the software powered by machine learning models. TPOT is a Python automated machine learning tool used for optimizing machine learning pipelines using genetic programming. Automating machine learning with TPOT enables individuals and companies to develop production-ready machine learning models cheaper and faster than with traditional methods. With this practical guide to AutoML, developers working with Python on machine learning tasks will be able to put their knowledge to work and become productive quickly. You'll adopt a hands-on approach to learning the implementation of AutoML and associated methodologies. Complete with step-by-step explanations of essential concepts, practical examples, and self-assessment questions, this book will show you how to build automated classification and regression models and compare their performance to custom-built models. As you advance, you'll also develop state-of-the-art models using only a couple of lines of code and see how those models outperform all of your previous models on the same datasets. By the end of this book, you'll have gained the confidence to implement AutoML techniques in your organization on a production level. What you will learnGet to grips with building automated machine learning modelsBuild classification and regression models with impressive accuracy in a short timeDevelop neural network classifiers with AutoML techniquesCompare AutoML models with traditional, manually developed models on the same datasetsCreate robust, production-ready modelsEvaluate automated classification models based on metrics such as accuracy, recall, precision, and f1-scoreGet hands-on with deployment using Flask-RESTful on localhostWho this book is for Data scientists, data analysts, and software developers who are new to machine learning and want to use it in their applications will find this book useful. This book is also for business users looking to automate business tasks with machine learning. Working knowledge of the Python programming language and beginner-level understanding of machine learning are necessary to get started.
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.