How the NSF became an important yet controversial patron for the social sciences, influencing debates over their scientific status and social relevance. In the early Cold War years, the U.S. government established the National Science Foundation (NSF), a civilian agency that soon became widely known for its dedication to supporting first-rate science. The agency's 1950 enabling legislation made no mention of the social sciences, although it included a vague reference to "other sciences." Nevertheless, as Mark Solovey shows in this book, the NSF also soon became a major--albeit controversial--source of public funding for them.
Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€"the "eyes glazed over" syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€"a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand "why we can't teach the way we used to." "Inquiry" refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm.
The National Science Foundation (NSF) has played a key role over the past several decades in advancing understanding of Earth's systems by funding research on atmospheric, ocean, hydrologic, geologic, polar, ecosystem, social, and engineering-related processes. Today, however, those systems are being driven like never before by human technologies and activities. Our understanding has struggled to keep pace with the rapidity and magnitude of human-driven changes, their impacts on human and ecosystem sustainability and resilience, and the effectiveness of different pathways to address those challenges. Given the urgency of understanding human-driven changes, NSF will need to sustain and expand its efforts to achieve greater impact. The time is ripe to create a next-generation Earth systems science initiative that emphasizes research on complex interconnections and feedbacks between natural and social processes. This will require NSF to place an increased emphasis on research inspired by real-world problems while maintaining their strong legacy of curiosity driven research across many disciplines ? as well as enhance the participation of social, engineering, and data scientists, and strengthen efforts to include diverse perspectives in research.
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
Invaluable guidance on how scientists can communicate the societal benefits of their work to the public and funding agencies. This will help scientists submit proposals to the US National Science Foundation and other funding agencies with a 'Broader Impacts' section, as well as helping to develop successful wider outreach activities.
Historians of the postwar transformation of science have focused largely on the physical sciences, especially the relation of science to the military funding agencies. In Shaping Biology, Toby A. Appel brings attention to the National Science Foundation and federal patronage of the biological sciences. Scientists by training, NSF biologists hoped in the 1950s that the new agency would become the federal government's chief patron for basic research in biology, the only agency to fund the entire range of biology—from molecules to natural history museums—for its own sake. Appel traces how this vision emerged and developed over the next two and a half decades, from the activities of NSF's Division of Biological and Medical Sciences, founded in 1952, through the cold war expansion of the 1950s and 1960s and the constraints of the Vietnam War era, to its reorganization out of existence in 1975. This history of NSF highlights fundamental tensions in science policy that remain relevant today: the pull between basic and applied science; funding individuals versus funding departments or institutions; elitism versus distributive policies of funding; issues of red tape and accountability. In this NSF-funded study, Appel explores how the agency developed, how it worked, and what difference it made in shaping modern biology in the United States. Based on formerly untapped archival sources as well as on interviews of participants, and building upon prior historical literature, Shaping Biology covers new ground and raises significant issues for further research on postwar biology and on federal funding of science in general.
Traces engineers' struggle to win intellectual, financial and organizational recognition within the National Science Foundation. This book analyzes the tools and arguments, how they altered over time, and how budgetary and philosophical debates were played out through organizational manipulation.
The publication of research articles involving animal studies is central to many disciplines in science and biomedicine. Effective descriptions in such publications enable researchers to interpret the data, evaluate and replicate findings, and move the science forward. Analyses of published studies with research animals have demonstrated numerous deficiencies in the reporting of details in research methods for animal studies. Considerable variation in the amount of information required by scientific publications and reported by authors undermines this basic scientific principle and results in the unnecessary use of animals and other resources in failed efforts to reproduce study results. Guidance for the Description of Animal Research in Scientific Publications outlines the information that should be included in scientific papers regarding the animal studies to ensure that the study can be replicated. The report urges journal editors to actively promote effective and ethical research by encouraging the provision of sufficient information. Examples of this information include: conditions of housing and husbandry, genetic nomenclature, microbial status, detailed experimental manipulations, and handling and use of pharmaceuticals. Inclusion of this information will enable assessment and interpretation of research findings and advancement of knowledge based on reproducible results.
For over a century, field stations have been important entryways for scientists to study and make important discoveries about the natural world. They are centers of research, conservation, education, and public outreach, often embedded in natural environments that range from remote to densely populated urban locations. Because they lack traditional university departmental boundaries, researchers at field stations have the opportunity to converge their science disciplines in ways that can change careers and entire fields of inquiry. Field stations provide physical space for immersive research, hands-on learning, and new collaborations that are otherwise hard to achieve in the everyday bustle of research and teaching lives on campus. But the separation from university campuses that allows creativity to flourish also creates challenges. Sometimes, field stations are viewed as remote outposts and are overlooked because they tend to be away from population centers and their home institutions. This view is exacerbated by the lack of empirical evidence that can be used to demonstrate their value to science and society. Enhancing the Value and Sustainability of Field Stations and Marine Laboratories in the 21st Century summarizes field stations' value to science, education, and outreach and evaluates their contributions to research, innovation, and education. This report suggests strategies to meet future research, education, outreach, infrastructure, funding, and logistical needs of field stations. Today's technologies - such as streaming data, remote sensing, robot-driven monitoring, automated DNA sequencing, and nanoparticle environmental sensors - provide means for field stations to retain their special connection to nature and still interact with the rest of the world in ways that can fuel breakthroughs in the environmental, physical, natural, and social sciences. The intellectual and natural capital of today's field stations present a solid platform, but many need enhancements of infrastructure and dynamic leadership if they are to meet the challenges of the complex problems facing the world. This report focuses on the capability of field stations to address societal needs today and in the future.