Pseudo-reductive Groups

Pseudo-reductive Groups

Author: Brian Conrad

Publisher: Cambridge University Press

Published: 2015-06-04

Total Pages: 691

ISBN-13: 1107087236

DOWNLOAD EBOOK

This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. This second edition has been revised and updated, with Chapter 9 being completely rewritten via the useful new notion of 'minimal type' for pseudo-reductive groups.


Representations of Algebraic Groups

Representations of Algebraic Groups

Author: Jens Carsten Jantzen

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 594

ISBN-13: 082184377X

DOWNLOAD EBOOK

Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.


Pseudo-reductive Groups

Pseudo-reductive Groups

Author: Brian Conrad

Publisher: Cambridge University Press

Published: 2010-07-29

Total Pages: 555

ISBN-13: 1139490346

DOWNLOAD EBOOK

Pseudo-reductive groups arise naturally in the study of general smooth linear algebraic groups over non-perfect fields and have many important applications. This self-contained monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. The authors present numerous new results and also give a complete exposition of Tits' structure theory of unipotent groups. They prove the conjugacy results (conjugacy of maximal split tori, minimal pseudo-parabolic subgroups, maximal split unipotent subgroups) announced by Armand Borel and Jacques Tits, and also give the Bruhat decomposition, of general smooth connected algebraic groups. Researchers and graduate students working in any related area, such as algebraic geometry, algebraic group theory, or number theory, will value this book as it develops tools likely to be used in tackling other problems.


Classification of Pseudo-reductive Groups (AM-191)

Classification of Pseudo-reductive Groups (AM-191)

Author: Brian Conrad

Publisher: Princeton University Press

Published: 2015-11-10

Total Pages: 256

ISBN-13: 1400874025

DOWNLOAD EBOOK

In the earlier monograph Pseudo-reductive Groups, Brian Conrad, Ofer Gabber, and Gopal Prasad explored the general structure of pseudo-reductive groups. In this new book, Classification of Pseudo-reductive Groups, Conrad and Prasad go further to study the classification over an arbitrary field. An isomorphism theorem proved here determines the automorphism schemes of these groups. The book also gives a Tits-Witt type classification of isotropic groups and displays a cohomological obstruction to the existence of pseudo-split forms. Constructions based on regular degenerate quadratic forms and new techniques with central extensions provide insight into new phenomena in characteristic 2, which also leads to simplifications of the earlier work. A generalized standard construction is shown to account for all possibilities up to mild central extensions. The results and methods developed in Classification of Pseudo-reductive Groups will interest mathematicians and graduate students who work with algebraic groups in number theory and algebraic geometry in positive characteristic.


Pseudo-reductive Groups

Pseudo-reductive Groups

Author: Brian Conrad

Publisher: Cambridge University Press

Published: 2015-06-04

Total Pages: 691

ISBN-13: 1316300056

DOWNLOAD EBOOK

Pseudo-reductive groups arise naturally in the study of general smooth linear algebraic groups over non-perfect fields and have many important applications. This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. In this second edition there is new material on relative root systems and Tits systems for general smooth affine groups, including the extension to quasi-reductive groups of famous simplicity results of Tits in the semisimple case. Chapter 9 has been completely rewritten to describe and classify pseudo-split absolutely pseudo-simple groups with a non-reduced root system over arbitrary fields of characteristic 2 via the useful new notion of 'minimal type' for pseudo-reductive groups. Researchers and graduate students working in related areas, such as algebraic geometry, algebraic group theory, or number theory will value this book, as it develops tools likely to be used in tackling other problems.


p-Adic Lie Groups

p-Adic Lie Groups

Author: Peter Schneider

Publisher: Springer Science & Business Media

Published: 2011-06-11

Total Pages: 259

ISBN-13: 364221147X

DOWNLOAD EBOOK

Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.


The Character Theory of Finite Groups of Lie Type

The Character Theory of Finite Groups of Lie Type

Author: Meinolf Geck

Publisher: Cambridge University Press

Published: 2020-02-27

Total Pages: 406

ISBN-13: 1108808905

DOWNLOAD EBOOK

Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne–Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish–Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers.


Unitary Representations of Reductive Lie Groups

Unitary Representations of Reductive Lie Groups

Author: David A. Vogan

Publisher: Princeton University Press

Published: 1987-10-21

Total Pages: 324

ISBN-13: 9780691084824

DOWNLOAD EBOOK

This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at least) of most proofs. The first half of the book is devoted to the three more or less understood constructions of such representations: parabolic induction, complementary series, and cohomological parabolic induction. This culminates in the description of all irreducible unitary representation of the general linear groups. For other groups, one expects to need a new construction, giving "unipotent representations." The latter half of the book explains the evidence for that expectation and suggests a partial definition of unipotent representations.


Algebraic and Analytic Methods in Representation Theory

Algebraic and Analytic Methods in Representation Theory

Author:

Publisher: Elsevier

Published: 1996-09-27

Total Pages: 357

ISBN-13: 0080526950

DOWNLOAD EBOOK

This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field


Spectral Decomposition and Eisenstein Series

Spectral Decomposition and Eisenstein Series

Author: Colette Moeglin

Publisher: Cambridge University Press

Published: 1995-11-02

Total Pages: 382

ISBN-13: 9780521418935

DOWNLOAD EBOOK

A self-contained introduction to automorphic forms, and Eisenstein series and pseudo-series, proving some of Langlands' work at the intersection of number theory and group theory.