Research Handbook on Inventory Management

Research Handbook on Inventory Management

Author: Jing-Sheng J. Song

Publisher: Edward Elgar Publishing

Published: 2023-08-14

Total Pages: 565

ISBN-13: 180037710X

DOWNLOAD EBOOK

This comprehensive Handbook provides an overview of state-of-the-art research on quantitative models for inventory management. Despite over half a century’s progress, inventory management remains a challenge, as evidenced by the recent Covid-19 pandemic. With an expanse of world-renowned inventory scholars from major international research universities, this Handbook explores key areas including mathematical modelling, the interplay of inventory decisions and other business decisions and the unique challenges posed to multiple industries.


A Course in Robust Control Theory

A Course in Robust Control Theory

Author: Geir E. Dullerud

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 427

ISBN-13: 1475732902

DOWNLOAD EBOOK

During the 90s robust control theory has seen major advances and achieved a new maturity, centered around the notion of convexity. The goal of this book is to give a graduate-level course on this theory that emphasizes these new developments, but at the same time conveys the main principles and ubiquitous tools at the heart of the subject. Its pedagogical objectives are to introduce a coherent and unified framework for studying the theory, to provide students with the control-theoretic background required to read and contribute to the research literature, and to present the main ideas and demonstrations of the major results. The book will be of value to mathematical researchers and computer scientists, graduate students planning to do research in the area, and engineering practitioners requiring advanced control techniques.


First-order and Stochastic Optimization Methods for Machine Learning

First-order and Stochastic Optimization Methods for Machine Learning

Author: Guanghui Lan

Publisher: Springer Nature

Published: 2020-05-15

Total Pages: 591

ISBN-13: 3030395685

DOWNLOAD EBOOK

This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.


Multistage Stochastic Optimization

Multistage Stochastic Optimization

Author: Georg Ch. Pflug

Publisher: Springer

Published: 2014-11-12

Total Pages: 309

ISBN-13: 3319088432

DOWNLOAD EBOOK

Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.


The Design of Approximation Algorithms

The Design of Approximation Algorithms

Author: David P. Williamson

Publisher: Cambridge University Press

Published: 2011-04-26

Total Pages: 518

ISBN-13: 9780521195270

DOWNLOAD EBOOK

Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.


Applications of Stochastic Programming

Applications of Stochastic Programming

Author: Stein W. Wallace

Publisher: SIAM

Published: 2005-01-01

Total Pages: 724

ISBN-13: 9780898718799

DOWNLOAD EBOOK

Consisting of two parts, this book presents papers describing publicly available stochastic programming systems that are operational. It presents a diverse collection of application papers in areas such as production, supply chain and scheduling, gaming, environmental and pollution control, financial modeling, telecommunications, and electricity.