Proteases: Structure and Function

Proteases: Structure and Function

Author: Klaudia Brix

Publisher: Springer Science & Business Media

Published: 2014-01-21

Total Pages: 568

ISBN-13: 3709108853

DOWNLOAD EBOOK

Proteolysis is an irreversible posttranslational modification affecting each and every protein from its biosynthesis to its degradation. Limited proteolysis regulates targeting and activity throughout the lifetime of proteins. Balancing proteolysis is therefore crucial for physiological homeostasis. Control mechanisms include proteolytic maturation of zymogens resulting in active proteases and the shut down of proteolysis by counteracting endogenous protease inhibitors. Beyond the protein level, proteolytic enzymes are involved in key decisions during development that determine life and death – from single cells to adult individuals. In particular, we are becoming aware of the subtle role that proteases play in signaling events within proteolysis networks, in which the enzymes act synergistically and form alliances in a web-like fashion. Proteases come in different flavors. At least five families of mechanistically distinct enzymes and even more inhibitor families are known to date, many family members are still to be studied in detail. We have learned a lot about the diversity of the about 600 proteases in the human genome and begin to understand their physiological roles in the degradome. However, there are still many open questions regarding their actions in pathophysiology. It is in this area where the development of small molecule inhibitors as therapeutic agents is extremely promising. Approaching proteolysis as the most important, irreversible post-translational protein modification essentially requires an integrated effort of complementary research disciplines. In fact, proteolytic enzymes seem as diverse as the scientists working with these intriguing proteins. This book reflects the efforts of many in this exciting field of research where team and network formations are essential to move ahead.


Viral Proteases and Their Inhibitors

Viral Proteases and Their Inhibitors

Author: Satya Prakash Gupta

Publisher: Academic Press

Published: 2017-07-03

Total Pages: 518

ISBN-13: 0128096829

DOWNLOAD EBOOK

Viral Proteases and Their Inhibitors provides a thorough examination of viral proteases from their molecular components, to therapeutic applications. As information on three dimensional structures and biological functions of these viral proteases become known, unexpected protein folds and unique mechanisms of proteolysis are realized. This book investigates how this facilitates the design and development of potent antiviral agents used against life-threatening viruses. Users will find descriptions of each virus that detail the structure and function of viral proteases, discuss the design and development of inhibitors, and analyze the structure-activity relationships of inhibitors. This book is ideal biochemists, virologists and those working on antiviral agents. Provides comprehensive, state-of-the-art coverage of virus infections, the virus lifecycle, and mechanisms of protease inhibition Analyzes structure-activity relationships of inhibitors of each viral protease Presents an in-depth view of the structure and function of viral proteases


Handbook of Proteolytic Enzymes, Volume 1

Handbook of Proteolytic Enzymes, Volume 1

Author: Alan J. Barrett

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 1182

ISBN-13: 0080984150

DOWNLOAD EBOOK

Handbook of Proteolytic Enzymes, Second Edition, Volume 1: Aspartic and Metallo Peptidases is a compilation of numerous progressive research studies on proteolytic enzymes. This edition is organized into two main sections encompassing 328 chapters. This handbook is organized around a system for the classification of peptidases, which is a hierarchical one built on the concepts of catalytic type, clan, family and peptidase. The concept of catalytic type of a peptidase depends upon the chemical nature of the groups responsible for catalysis. The recognized catalytic types are aspartic, cysteine, metallo, serine, threonine, and the unclassified enzymes, while clans and families are groups of homologous peptidases. Homology at the level of a family of peptidases is shown by statistically significant relationship in amino acid sequence to a representative member called the type example, or to another member of the family that has already been shown to be related to the type example. Each chapter discusses the history, activity, specificity, structural chemistry, preparation, and biological aspects of the enzyme. This book will prove useful to enzyme chemists and researchers.


Retroviral Proteases

Retroviral Proteases

Author: Lawrence C. Kuo

Publisher: Gulf Professional Publishing

Published: 1994-09-22

Total Pages: 494

ISBN-13: 9780121821425

DOWNLOAD EBOOK

Methods included in this volume apply to the expression and characterization of retroviral proteases and their inhibitor/substrate design.


Mechanisms of Catalysis

Mechanisms of Catalysis

Author:

Publisher: Academic Press

Published: 1991-01-28

Total Pages: 471

ISBN-13: 0080865968

DOWNLOAD EBOOK

The remarkable expansion of information leading to a deeper understanding of enzymes on the molecular level necessitated the development of this volume which not only introduces new topics to The Enzymes series but presents new information on some covered in Volume I and II of this edition.


Cancer-Leading Proteases

Cancer-Leading Proteases

Author: Satya Prakash Gupta

Publisher: Academic Press

Published: 2020-01-16

Total Pages: 524

ISBN-13: 0128181680

DOWNLOAD EBOOK

Cancer-Leading Proteases: Structures, Functions, and Inhibition presents a detailed discussion on the role of proteases as drug targets and how they have been utilized to develop anticancer drugs. Proteases possess outstanding diversity in their functions. Because of their unique properties, proteases are a major focus of attention for the pharmaceutical industry as potential drug targets or as diagnostic and prognostic biomarkers. This book covers the structure and functions of proteases and the chemical and biological rationale of drug design relating to how these proteases can be exploited to find useful chemotherapeutics to fight cancers. In addition, the book encompasses the experimental and theoretical aspects of anticancer drug design based on proteases. It is a useful resource for pharmaceutical scientists, medicinal chemists, biochemists, microbiologists, and cancer researchers working on proteases.


Subtilisin Enzymes

Subtilisin Enzymes

Author: Richard Bott

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 287

ISBN-13: 1461303192

DOWNLOAD EBOOK

Subtilisin is the most extensively studied model system for protein engineering. The primary motivating factor for the interest in subtilisin is the commercial utility of this class of proteases. The subtilisin symposium was the first international meeting to bring together a large number of groups that have focused on the subtilisins and the subtilases-the protein superfamily of subtilisin-like enzymes. The results presented at the symposium are in this way a unique compendium of a broad spectrum of work largely focused on harnessing the potential of site-directed mutagenesis to understand and deliberately alter the function of these enzymes toward a desired end. This sort of protein engineering has been extremely successful in subtilisin, with many such "engineered" enzymes now widely used in commer cial enterprises. In this regard the experience derived from subtilisin does represent practical protein engineering. It is becoming clear that subtilisin represents a larger class of enzymes, the subtilases, that include many of the human pro hormone-converting enzymes. As international collabo rative efforts to sequence entire genomes continue, we can reasonably expect that additional members of the subtilase class will be encountered. Whenever interest in a member of this class of enzyme arises, the work on subtilisin will serve as a guide to the analysis for what in bacillus, fungi, and industry is an everyday workhorse enzyme.


Proteins

Proteins

Author: David Whitford

Publisher: John Wiley & Sons

Published: 2013-04-25

Total Pages: 544

ISBN-13: 1118685725

DOWNLOAD EBOOK

Proteins: Structure and Function is a comprehensive introduction to the study of proteins and their importance to modern biochemistry. Each chapter addresses the structure and function of proteins with a definitive theme designed to enhance student understanding. Opening with a brief historical overview of the subject the book moves on to discuss the ‘building blocks’ of proteins and their respective chemical and physical properties. Later chapters explore experimental and computational methods of comparing proteins, methods of protein purification and protein folding and stability. The latest developments in the field are included and key concepts introduced in a user-friendly way to ensure that students are able to grasp the essentials before moving on to more advanced study and analysis of proteins. An invaluable resource for students of Biochemistry, Molecular Biology, Medicine and Chemistry providing a modern approach to the subject of Proteins.


Activation of Viruses by Host Proteases

Activation of Viruses by Host Proteases

Author: Eva Böttcher-Friebertshäuser

Publisher: Springer

Published: 2018-05-22

Total Pages: 337

ISBN-13: 3319754742

DOWNLOAD EBOOK

This book will give an overview on viruses undergoing proteolytic activation through host proteases. The chapters will be organized in three themed parts, the first part describing respective viruses and their characteristics in detail. In the second part the molecular and cellular biology of the proteases involved as well as their physiological functions will be further explored. The third part will contain a chapter on protease inhibitors that are promising tools for antiviral therapy. This book will engage scholars in virology and medical microbiology as well as researchers with an interest in enzymology and protein structure and function relationship.