This publication presents a comprehensive overview of various aspects relating to the application of cogeneration with nuclear energy, which may offer advantages such as increased efficiency, better cost effectiveness, and reduced environmental impact. The publication provides details on experiences, best practices and expectations for the foreseeable future of cogeneration with nuclear power technology and serves as a guide that supports newcomer countries. It includes information on systems and applications in various sectors, feasibility aspects, technical and economic details, and case studies.
Combustion Engineering, Second Edition maintains the same goal as the original: to present the fundamentals of combustion science with application to today's energy challenges. Using combustion applications to reinforce the fundamentals of combustion science, this text provides a uniquely accessible introduction to combustion for undergraduate stud
Eminent physicist and economist, Robert Ayres, examines the history of technology as a change agent in society, focusing on societal roots rather than technology as an autonomous, self-perpetuating phenomenon. With rare exceptions, technology is developed in response to societal needs that have evolutionary roots and causes. In our genus Homo, language evolved in response to a need for our ancestors to communicate, both in the moment, and to posterity. A band of hunters had no chance in competition with predators that were larger and faster without this type of organization, which eventually gave birth to writing and music. The steam engine did not leap fully formed from the brain of James Watt. It evolved from a need to pump water out of coal mines, driven by a need to burn coal instead of firewood, in turn due to deforestation. Later, the steam engine made machines and mechanization possible. Even quite simple machines increased human productivity by a factor of hundreds, if not thousands. That was the Industrial Revolution. If we count electricity and the automobile as a second industrial revolution, and the digital computer as the beginning of a third, the world is now on the cusp of a fourth revolution led by microbiology. These industrial revolutions have benefited many in the short term, but devastated the Earths ecosystems. Can technology save the human race from the catastrophic consequences of its past success? That is the question this book will try to answer.
This book, from noted materials selection authority Mike Ashby, provides a structure and framework for analyzing sustainable development and the role of materials in it. The aim is to introduce ways of exploring sustainable development to readers in a way that avoids simplistic interpretations and approaches complexity in a systematic way. There is no completely "right" answer to questions of sustainable development – instead, there is a thoughtful, well-researched response that recognizes concerns of stakeholders, the conflicting priorities and the economic, legal and social aspects of a technology as well as its environmental legacy. The intent is not to offer solutions to sustainability challenges but rather to improve the quality of discussion and enable informed, balanced debate. - Winner of a 2016 Most Promising New Textbook Award from the Textbook and Academic Authors Association - Describes sustainable development in increasingly detailed progression, from a broad overview to specific tools and methods - Six chapter length case studies on such topics as biopolymers, electric cars, bamboo, and lighting vividly illustrate the sustainable development process from a materials perspective - Business and economic aspects are covered in chapters on corporate sustainability and the "circular materials economy" - Support for course use includes online solutions manual and image bank
Member States intending to introduce a nuclear power programme will need to pass through several phases during the implementation. Experience shows that careful planning of the objectives, roles, responsibilities, interfaces and tasks to be carried out in different phases of a nuclear project is important for success. This publication presents a harmonized approach that may be used to structure the owner/operator management system and establish and manage nuclear projects and their development activities irrespective of the adopted approach. It has been developed from shared management practices and consolidated experiences provided by nuclear project management specialists through a series of workshops and working groups organized by the IAEA. The resultant publication presents a useful framework for the management of nuclear projects from initiation to closeout and captures international best practices.
This report provides a data base for Project Independence Blueprint in the area of synthetic fuels from coal. This area involves both industrial practice and a relatively large amount of advanced coal conversion technology, much of which is on an advanced pilot plant level. It must be emphasized that the report simply identifies representative resources (financial, raw materials, manpower) needed in case a decision is made to achieve given synthetic fuel production rates. The report does not suggest or imply that the resources identified herein, either financial in terms of capital or raw resources in terms of the needed coal mine capacities, are currently available. By simply identifying the critical resources, this report provides a needed data base for decision in the area of synthetic fuels.
The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. It is a scenario based simulation tool which can model several nuclear fuel cycle options including existing nuclear power reactor types and future possible reactor types. The past operations of the power reactors and fuel cycle facilities can be modelled in the system, in order to estimate the current amount of spent fuel stored or total Pu in stored spent fuel. It can also accept future projections for nuclear power and other scenario parameters in order to predict future fuel cycle material requirements.The model has been designed to be an optimum mixture of simplicity, speed and accuracy. It does not require too many input parameters if the purpose is just to compare the requirements for selected scenarios. Furthermore, the accuracy of the system can be improved by introducing more detailed and correct sets of input parameters.
This publication is the result of an IAEA technical meeting and reports on Member States' capabilities in modelling, predicting and improving their understanding of the behaviour of nuclear fuel under accident conditions. The main results and outcomes of a coordinated research project (CRP) on this topic are also presented.
The reactors around the world have produced more than 2000 tonnes of plutonium, contained in spent fuel or as separated forms through reprocessing. Disposition of fissile materials has become a primary concern of nuclear non-proliferation efforts worldwide. There is a significant interest in IAEA Member States to develop proliferation resistant nuclear fuel cycles for incineration of plutonium such as inert matrix fuels (IMFs). This publication reviews the status of potential IMF candidates and describes several identified candidate materials for both fast and thermal reactors: MgO, ZrO2, SiC, Zr alloy, SiAl, ZrN; some of these have undergone test irradiations and post irradiation examination. Also discussed are modelling of IMF fuel performance and safety analysis. System studies have identified strategies for both implementation of IMF fuel as homogeneous or heterogeneous phases, as assemblies or core loadings and in existing reactors in the shorter term, as well as in new reactors in the longer term.
Describes the rationale and vision for the peaceful use of nuclear energy. The publication identifies the basic principles that nuclear energy systems must satisfy to fulfil their promise of meeting growing global energy demands.