Propagation, Scattering and Dissipation of Electromagnetic Waves

Propagation, Scattering and Dissipation of Electromagnetic Waves

Author: A. S. Ilʹinskiĭ

Publisher: IET

Published: 1993

Total Pages: 292

ISBN-13: 9780863412837

DOWNLOAD EBOOK

Aimed at physicists and engineers conducting theoretical research or designing microwave and millimetre-wave devices, this study explores methods of calculating microwave absorption in waveguides, resonators and periodic structures.


Wave Propagation and Scattering in Random Media

Wave Propagation and Scattering in Random Media

Author: Akira Ishimaru

Publisher: Elsevier

Published: 2013-06-11

Total Pages: 272

ISBN-13: 0323158323

DOWNLOAD EBOOK

Wave Propagation and Scattering in Random Media, Volume 1: Single Scattering and Transport Theory presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner, as well as useful approximation techniques applicable to a variety of different situations. The emphasis is on single scattering theory and transport theory. The reader is introduced to the fundamental concepts and useful results of the statistical wave propagation theory. This volume is comprised of 13 chapters, organized around three themes: waves in random scatterers, waves in random continua, and rough surface scattering. The first part deals with the scattering and propagation of waves in a tenuous distribution of scatterers, using the single scattering theory and its slight extension to explain the fundamentals of wave fluctuations in random media without undue mathematical complexities. Many practical problems of wave propagation and scattering in the atmosphere, oceans, and other random media are discussed. The second part examines transport theory, also known as the theory of radiative transfer, and includes chapters on wave propagation in random particles, isotropic scattering, and the plane-parallel problem. This monograph is intended for engineers and scientists interested in optical, acoustic, and microwave propagation and scattering in atmospheres, oceans, and biological media.


Solutions and Applications of Scattering, Propagation, Radiation and Emission of Electromagnetic Waves

Solutions and Applications of Scattering, Propagation, Radiation and Emission of Electromagnetic Waves

Author: Ahmed Kishk

Publisher: BoD – Books on Demand

Published: 2012-11-14

Total Pages: 362

ISBN-13: 9535108387

DOWNLOAD EBOOK

In this book, a wide range of different topics related to analytical as well as numerical solutions of problems related to scattering, propagation, radiation, and emission in different medium are discussed. Design of several devices and their measurements aspects are introduced. Topics related to microwave region as well as Terahertz and quasi-optical region are considered. Bi-isotropic metamaterial in optical region is investigated. Interesting numerical methods in frequency domain and time domain for scattering, radiation, forward as well as reverse problems and microwave imaging are summarized. Therefore, the book will satisfy different tastes for engineers interested for example in microwave engineering, antennas, and numerical methods.


Scattering and Propagation in Random Media

Scattering and Propagation in Random Media

Author: North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Electromagnetic Wave Propagation Panel. Specialists' Meeting

Publisher:

Published: 1988

Total Pages: 568

ISBN-13:

DOWNLOAD EBOOK

The topic of scattering and propagation in random media is one that has implications for the design, development and operation of most military systems that radiate energy as a means of accomplishing their funtion. Primary emphasis is on scattering and transmission in the atmosphere; however, other related random medium effects are not excluded. Modern methods of characterizing random media, mathematical methods and their applicability, effects on electromagnetic waves and the interpretation of these effects to specific system applications are described. The region of the spectrum considered is essentially unlimited and ranges from very long waves to optics. The performance of existing surveillance communication and navigation systems as well as the design of future systems is influenced by the propagation of energy via random media. An understanding of the nature of the medium and its impact on system design and performance is essential to the NATO community.


Spectral and Scattering Theory for Wave Propagation in Perturbed Stratified Media

Spectral and Scattering Theory for Wave Propagation in Perturbed Stratified Media

Author: Ricardo Weder

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 196

ISBN-13: 1461244307

DOWNLOAD EBOOK

The propagation of acoustic and electromagnetic waves in stratified media is a subject that has profound implications in many areas of applied physics and in engineering, just to mention a few, in ocean acoustics, integrated optics, and wave guides. See for example Tolstoy and Clay 1966, Marcuse 1974, and Brekhovskikh 1980. As is well known, stratified media, that is to say media whose physical properties depend on a single coordinate, can produce guided waves that propagate in directions orthogonal to that of stratification, in addition to the free waves that propagate as in homogeneous media. When the stratified media are perturbed, that is to say when locally the physical properties of the media depend upon all of the coordinates, the free and guided waves are no longer solutions to the appropriate wave equations, and this leads to a rich pattern of wave propagation that involves the scattering of the free and guided waves among each other, and with the perturbation. These phenomena have many implications in applied physics and engineering, such as in the transmission and reflexion of guided waves by the perturbation, interference between guided waves, and energy losses in open wave guides due to radiation. The subject matter of this monograph is the study of these phenomena.


Scattering of Electromagnetic Waves

Scattering of Electromagnetic Waves

Author: Leung Tsang

Publisher: John Wiley & Sons

Published: 2004-04-07

Total Pages: 432

ISBN-13: 0471463795

DOWNLOAD EBOOK

A timely and authoritative guide to the state of the art of wave scattering Scattering of Electromagnetic Waves offers in three volumes a complete and up-to-date treatment of wave scattering by random discrete scatterers and rough surfaces. Written by leading scientists who have made important contributions to wave scattering over three decades, this new work explains the principles, methods, and applications of this rapidly expanding, interdisciplinary field. It covers both introductory and advanced material and provides students and researchers in remote sensing as well as imaging, optics, and electromagnetic theory with a one-stop reference to a wealth of current research results. Plus, Scattering of Electromagnetic Waves contains detailed discussions of both analytical and numerical methods, including cutting-edge techniques for the recovery of earth/land parametric information. The three volumes are entitled respectively Theories and Applications, Numerical Simulation, and Advanced Topics. In the third volume, Advanced Topics, Leung Tsang (University of Washington) and Jin Au Kong (MIT), cover: * Two-dimensional random rough surface scattering * Kirchhoff and related methods for rough surface scattering * Analytic theory of volume scattering based on cascading of layers * Analytic wave theory for medium with permittivity fluctuations * Multiple scattering theory for discrete scatterers * Quasicrystalline approximation in dense media scattering * Dense media scattering * Backscattering enhancement


Electromagnetic Scattering Modelling for Quantitative Remote Sensing

Electromagnetic Scattering Modelling for Quantitative Remote Sensing

Author: Ya-Qiu Jin

Publisher: World Scientific

Published: 1993

Total Pages: 356

ISBN-13: 9789810216481

DOWNLOAD EBOOK

Advances during the last two decades in radio electronics, space science and computers have turned remote sensing technology into one of the most effective tools for global exploration and environmental monitoring. This book is a comprehensive account of the theoretical models and techniques required for a full interpretation of the rich images and data that remote sensing can provide. Starting with the basics of vector radiative transfer and scattering theory, the book goes on to develop quantitative methods involving most comprehensive models of discrete scatters, continuous random media and randomly rough surfaces. References are constantly made to real-world parameters and models involved in the probing of different types of geographical terrain. The book is intended as an introductory graduate text and a research reference. It assumes a reasonable foundation in electromagnetism and common techniques in mathematical physics.