Differential-Algebraic Equations: A Projector Based Analysis

Differential-Algebraic Equations: A Projector Based Analysis

Author: René Lamour

Publisher: Springer Science & Business Media

Published: 2013-01-19

Total Pages: 667

ISBN-13: 3642275559

DOWNLOAD EBOOK

Differential algebraic equations (DAEs), including so-called descriptor systems, began to attract significant research interest in applied and numerical mathematics in the early 1980s, no more than about three decades ago. In this relatively short time, DAEs have become a widely acknowledged tool to model processes subjected to constraints, in order to simulate and to control processes in various application fields such as network simulation, chemical kinematics, mechanical engineering, system biology. DAEs and their more abstract versions in infinite-dimensional spaces comprise a great potential for future mathematical modeling of complex coupled processes. The purpose of the book is to expose the impressive complexity of general DAEs from an analytical point of view, to describe the state of the art as well as open problems and so to motivate further research to this versatile, extra-ordinary topic from a broader mathematical perspective. The book elaborates a new general structural analysis capturing linear and nonlinear DAEs in a hierarchical way. The DAE structure is exposed by means of special projector functions. Numerical integration issues and computational aspects are treated also in this context.


Progress in Differential-Algebraic Equations

Progress in Differential-Algebraic Equations

Author: Sebastian Schöps

Publisher: Springer

Published: 2014-11-13

Total Pages: 211

ISBN-13: 3662449269

DOWNLOAD EBOOK

This book contains the proceedings of the 8th Workshop on Coupled Descriptor Systems held March 2013 in the Castle of Eringerfeld, Geseke in the neighborhood of Paderborn, Germany. It examines the wide range of current research topics in descriptor systems, including mathematical modeling, index analysis, wellposedness of problems, stiffness and different time-scales, cosimulation and splitting methods and convergence analysis. In addition, the book also presents applications from the automotive and circuit industries that show that descriptor systems provide challenging problems from the point of view of both theory and practice. The book contains nine papers and is organized into three parts: control, simulation, and model order reduction. It will serve as an ideal resource for applied mathematicians and engineers, in particular those from mechanics and electromagnetics, who work with coupled differential equations.


Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory

Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory

Author: Peter Benner

Publisher: Springer

Published: 2015-05-09

Total Pages: 635

ISBN-13: 3319152602

DOWNLOAD EBOOK

This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on differential-algebraic equations, to which he together with Peter Kunkel made many groundbreaking contributions, are the topic of the chapters in Part III. Besides providing a scientific discussion of Volker Mehrmann's work and its impact on the development of several areas of applied mathematics, the individual chapters stand on their own as reference works for selected topics in the fields of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory.


Surveys in Differential-Algebraic Equations I

Surveys in Differential-Algebraic Equations I

Author: Achim Ilchmann

Publisher: Springer Science & Business Media

Published: 2013-03-19

Total Pages: 237

ISBN-13: 3642349285

DOWNLOAD EBOOK

The need for a rigorous mathematical theory for Differential-Algebraic Equations (DAEs) has its roots in the widespread applications of controlled dynamical systems, especially in mechanical and electrical engineering. Due to the strong relation to (ordinary) differential equations, the literature for DAEs mainly started out from introductory textbooks. As such, the present monograph is new in the sense that it comprises survey articles on various fields of DAEs, providing reviews, presentations of the current state of research and new concepts in - Controllability for linear DAEs - Port-Hamiltonian differential-algebraic systems - Robustness of DAEs - Solution concepts for DAEs - DAEs in circuit modeling. The results in the individual chapters are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.


Progress in Differential-Algebraic Equations II

Progress in Differential-Algebraic Equations II

Author: Timo Reis

Publisher: Springer Nature

Published: 2020-10-10

Total Pages: 486

ISBN-13: 3030539059

DOWNLOAD EBOOK

This book contains articles presented at the 9th Workshop on Differential-Algebraic Equations held in Paderborn, Germany, from 17–20 March 2019. The workshop brought together more than 40 mathematicians and engineers from various fields, such as numerical and functional analysis, control theory, mechanics and electromagnetic field theory. The participants focussed on the theoretical and numerical treatment of “descriptor” systems, i.e., differential-algebraic equations (DAEs). The book contains 14 contributions and is organized into four parts: mathematical analysis, numerics and model order reduction, control as well as applications. It is a useful resource for applied mathematicians with interest in recent developments in the field of differential algebraic equations but also for engineers, in particular those interested in modelling of constraint mechanical systems, thermal networks or electric circuits.


Surveys in Differential-Algebraic Equations III

Surveys in Differential-Algebraic Equations III

Author: Achim Ilchmann

Publisher: Springer

Published: 2015-10-29

Total Pages: 320

ISBN-13: 331922428X

DOWNLOAD EBOOK

The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.


Numerical Analysis of Nonlinear Partial Differential-algebraic Equations

Numerical Analysis of Nonlinear Partial Differential-algebraic Equations

Author: Michael Matthes

Publisher: Logos Verlag Berlin GmbH

Published: 2012

Total Pages: 191

ISBN-13: 3832532781

DOWNLOAD EBOOK

Various mathematical models in many application areas give rise to systems of so called partial or abstract differential-algebraic equations (ADAEs). A substantial mathematical treatment of nonlinear ADAEs is still at an initial stage.In this thesis two approaches for treating nonlinear ADAEs are presented. The first one represents an extension of an approach by Tischendorf for the treatment of a specific class of linear ADAEs to the nonlinear case. It is based on the Galerkin approach and the theory of monotone operators for evolution equations. Unique solvability of the ADAE and strong convergence of the Galerkin solutions is proven. Furthermore it is shown that this class of ADAEs has Perturbation Index 1 and at most ADAE Index 1. In the second approach we formulate two prototypes of coupled systems where a semi-explicit differential-algebraic equation is coupled to an infinite dimensional algebraic operator equation or an evolution equation. For both prototypes unique solvability, strong convergence of Galerkin solutions and a Perturbation Index 1 result is shown. Both prototypes can be applied to concrete coupled systems in circuit simulation relying on a new global solvability result for the nonlinear equations of the Modified Nodal Analysis under suitable topological assumptions.


Advances in Functional Analysis and Operator Theory

Advances in Functional Analysis and Operator Theory

Author: Marat V. Markin

Publisher: American Mathematical Society

Published: 2024-04-09

Total Pages: 250

ISBN-13: 1470473054

DOWNLOAD EBOOK

This volume contains the proceedings of the AMS-EMS-SMF Special Session on Advances in Functional Analysis and Operator Theory, held July 18–22, 2022, at the Université de Grenoble-Alpes, Grenoble, France. The papers reflect the modern interplay between differential equations, functional analysis, operator algebras, and their applications from the dynamics to quantum groups to number theory. Among the topics discussed are the Sturm-Liouville and boundary value problems, axioms of quantum mechanics, $C^{*}$-algebras and symbolic dynamics, von Neumann algebras and low-dimensional topology, quantum permutation groups, the Jordan algebras, and the Kadison–Singer transforms.


Surveys in Differential-Algebraic Equations IV

Surveys in Differential-Algebraic Equations IV

Author: Achim Ilchmann

Publisher: Springer

Published: 2017-03-08

Total Pages: 312

ISBN-13: 3319466186

DOWNLOAD EBOOK

The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs) which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - History of DAEs - DAE aspects of mechanical multibody systems - Model reduction of DAEs - Observability for DAEs - Numerical Analysis for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.


Computational Flexible Multibody Dynamics

Computational Flexible Multibody Dynamics

Author: Bernd Simeon

Publisher: Springer Science & Business Media

Published: 2013-06-14

Total Pages: 254

ISBN-13: 3642351581

DOWNLOAD EBOOK

This monograph, written from a numerical analysis perspective, aims to provide a comprehensive treatment of both the mathematical framework and the numerical methods for flexible multibody dynamics. Not only is this field permanently and rapidly growing, with various applications in aerospace engineering, biomechanics, robotics, and vehicle analysis, its foundations can also be built on reasonably established mathematical models. Regarding actual computations, great strides have been made over the last two decades, as sophisticated software packages are now capable of simulating highly complex structures with rigid and deformable components. The approach used in this book should benefit graduate students and scientists working in computational mechanics and related disciplines as well as those interested in time-dependent partial differential equations and heterogeneous problems with multiple time scales. Additionally, a number of open issues at the frontiers of research are addressed by taking a differential-algebraic approach and extending it to the notion of transient saddle point problems.