Analytic Projective Geometry

Analytic Projective Geometry

Author: John Bamberg

Publisher: Cambridge University Press

Published: 2023-10-31

Total Pages: 475

ISBN-13: 1009260596

DOWNLOAD EBOOK

This book introduces students to projective geometry from an analytic perspective, mixing recent results from the past 100 years with the history of the field in one of the most comprehensive surveys of the subject. The subject is taught conceptually, with worked examples and diagrams to aid in understanding.


Projective Geometry

Projective Geometry

Author: Elisabetta Fortuna

Publisher: Springer

Published: 2016-12-17

Total Pages: 275

ISBN-13: 3319428241

DOWNLOAD EBOOK

This book starts with a concise but rigorous overview of the basic notions of projective geometry, using straightforward and modern language. The goal is not only to establish the notation and terminology used, but also to offer the reader a quick survey of the subject matter. In the second part, the book presents more than 200 solved problems, for many of which several alternative solutions are provided. The level of difficulty of the exercises varies considerably: they range from computations to harder problems of a more theoretical nature, up to some actual complements of the theory. The structure of the text allows the reader to use the solutions of the exercises both to master the basic notions and techniques and to further their knowledge of the subject, thus learning some classical results not covered in the first part of the book. The book addresses the needs of undergraduate and graduate students in the theoretical and applied sciences, and will especially benefit those readers with a solid grasp of elementary Linear Algebra.


Basic Algebraic Geometry 2

Basic Algebraic Geometry 2

Author: Igor Rostislavovich Shafarevich

Publisher: Springer Science & Business Media

Published: 1994

Total Pages: 292

ISBN-13: 9783540575542

DOWNLOAD EBOOK

The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.


Projective Geometry

Projective Geometry

Author: Pierre Samuel

Publisher: Springer

Published: 1988-09-12

Total Pages: 180

ISBN-13:

DOWNLOAD EBOOK

The purpose of this book is to revive some of the beautiful results obtained by various geometers of the 19th century, and to give its readers a taste of concrete algebraic geometry. A good deal of space is devoted to cross-ratios, conics, quadrics, and various interesting curves and surfaces. The fundamentals of projective geometry are efficiently dealt with by using a modest amount of linear algebra. An axiomatic characterization of projective planes is also given. While the topology of projective spaces over real and complex fields is described, and while the geometry of the complex projective libe is applied to the study of circles and Möbius transformations, the book is not restricted to these fields. Interesting properties of projective spaces, conics, and quadrics over finite fields are also given. This book is the first volume in the Readings in Mathematics sub-series of the UTM. From the reviews: "...The book of P. Samuel thus fills a gap in the literature. It is a little jewel. Starting from a minimal background in algebra, he succeeds in 160 pages in giving a coherent exposition of all of projective geometry. ... one reads this book like a novel. " D.Lazard in Gazette des Mathématiciens#1


Collineations and Conic Sections

Collineations and Conic Sections

Author: Christopher Baltus

Publisher: Springer Nature

Published: 2020-09-01

Total Pages: 190

ISBN-13: 3030462870

DOWNLOAD EBOOK

This volume combines an introduction to central collineations with an introduction to projective geometry, set in its historical context and aiming to provide the reader with a general history through the middle of the nineteenth century. Topics covered include but are not limited to: The Projective Plane and Central Collineations The Geometry of Euclid's Elements Conic Sections in Early Modern Europe Applications of Conics in History With rare exception, the only prior knowledge required is a background in high school geometry. As a proof-based treatment, this monograph will be of interest to those who enjoy logical thinking, and could also be used in a geometry course that emphasizes projective geometry.


The Universe of Conics

The Universe of Conics

Author: Georg Glaeser

Publisher: Springer

Published: 2016-03-22

Total Pages: 496

ISBN-13: 3662454505

DOWNLOAD EBOOK

This text presents the classical theory of conics in a modern form. It includes many novel results that are not easily accessible elsewhere. The approach combines synthetic and analytic methods to derive projective, affine and metrical properties, covering both Euclidean and non-Euclidean geometries. With more than two thousand years of history, conic sections play a fundamental role in numerous fields of mathematics and physics, with applications to mechanical engineering, architecture, astronomy, design and computer graphics. This text will be invaluable to undergraduate mathematics students, those in adjacent fields of study, and anyone with an interest in classical geometry. Augmented with more than three hundred fifty figures and photographs, this innovative text will enhance your understanding of projective geometry, linear algebra, mechanics, and differential geometry, with careful exposition and many illustrative exercises.


The Geometry of Schemes

The Geometry of Schemes

Author: David Eisenbud

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 265

ISBN-13: 0387226397

DOWNLOAD EBOOK

Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.


Perspectives on Projective Geometry

Perspectives on Projective Geometry

Author: Jürgen Richter-Gebert

Publisher: Springer Science & Business Media

Published: 2011-02-04

Total Pages: 573

ISBN-13: 3642172865

DOWNLOAD EBOOK

Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.


Projective Duality and Homogeneous Spaces

Projective Duality and Homogeneous Spaces

Author: Evgueni A. Tevelev

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 257

ISBN-13: 3540269576

DOWNLOAD EBOOK

Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.


Smarandache Notions Journal, Vol. 13

Smarandache Notions Journal, Vol. 13

Author: Jack Allen

Publisher: Infinite Study

Published: 2002-12-01

Total Pages: 288

ISBN-13: 193123356X

DOWNLOAD EBOOK

The books are published by Smarandache Notions Journal. It is an electronic and hard-copy journal of research in mathematics. Besides this, occasionally It publishes papers of research in physics, philosophy, literary essays and creation, linguistics, and art work. Initially the journal was called "Smarandache Function Journal". Since 1996 to present the original journal was extended to the "Smarandache Notions Journal". It is annually published in the United States by the American Research Press in 1000 copies and on the internet.