Project Management Waterfall-Agile-It-Data Science

Project Management Waterfall-Agile-It-Data Science

Author: Dr. Festus Elleh PhD PMP PMI-ACP

Publisher: AuthorHouse

Published: 2023-03-22

Total Pages: 448

ISBN-13: 1665567112

DOWNLOAD EBOOK

This book is intended to introduce learners to waterfall, agile, information technology, and data science project management methodologies. Readers will learn about the concepts, processes, tools, and techniques that are useful for executing projects in waterfall, agile information technology, and data science environments. The objective is for learners to become contributors to the field of project management and deploy a structured approach to managing projects. Learners who read this book will be able to think critically about the concepts and practices of project management and perform exceptionally well in the PMP and PMI-ACP examinations.


Agile Data Science

Agile Data Science

Author: Russell Jurney

Publisher: "O'Reilly Media, Inc."

Published: 2013-10-15

Total Pages: 269

ISBN-13: 1449326919

DOWNLOAD EBOOK

Mining big data requires a deep investment in people and time. How can you be sure you’re building the right models? With this hands-on book, you’ll learn a flexible toolset and methodology for building effective analytics applications with Hadoop. Using lightweight tools such as Python, Apache Pig, and the D3.js library, your team will create an agile environment for exploring data, starting with an example application to mine your own email inboxes. You’ll learn an iterative approach that enables you to quickly change the kind of analysis you’re doing, depending on what the data is telling you. All example code in this book is available as working Heroku apps. Create analytics applications by using the agile big data development methodology Build value from your data in a series of agile sprints, using the data-value stack Gain insight by using several data structures to extract multiple features from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future, and translate predictions into action Get feedback from users after each sprint to keep your project on track


Agile Data Science 2.0

Agile Data Science 2.0

Author: Russell Jurney

Publisher: "O'Reilly Media, Inc."

Published: 2017-06-07

Total Pages: 351

ISBN-13: 1491960086

DOWNLOAD EBOOK

Data science teams looking to turn research into useful analytics applications require not only the right tools, but also the right approach if they’re to succeed. With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools. Author Russell Jurney demonstrates how to compose a data platform for building, deploying, and refining analytics applications with Apache Kafka, MongoDB, ElasticSearch, d3.js, scikit-learn, and Apache Airflow. You’ll learn an iterative approach that lets you quickly change the kind of analysis you’re doing, depending on what the data is telling you. Publish data science work as a web application, and affect meaningful change in your organization. Build value from your data in a series of agile sprints, using the data-value pyramid Extract features for statistical models from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future via classification and regression Translate predictions into actions Get feedback from users after each sprint to keep your project on track


Agile Analytics

Agile Analytics

Author: Ken Collier

Publisher: Addison-Wesley

Published: 2012

Total Pages: 368

ISBN-13: 032150481X

DOWNLOAD EBOOK

Using Agile methods, you can bring far greater innovation, value, and quality to any data warehousing (DW), business intelligence (BI), or analytics project. However, conventional Agile methods must be carefully adapted to address the unique characteristics of DW/BI projects. In Agile Analytics, Agile pioneer Ken Collier shows how to do just that. Collier introduces platform-agnostic Agile solutions for integrating infrastructures consisting of diverse operational, legacy, and specialty systems that mix commercial and custom code. Using working examples, he shows how to manage analytics development teams with widely diverse skill sets and how to support enormous and fast-growing data volumes. Collier's techniques offer optimal value whether your projects involve "back-end" data management, "front-end" business analysis, or both. Part I focuses on Agile project management techniques and delivery team coordination, introducing core practices that shape the way your Agile DW/BI project community can collaborate toward success Part II presents technical methods for enabling continuous delivery of business value at production-quality levels, including evolving superior designs; test-driven DW development; version control; and project automation Collier brings together proven solutions you can apply right now--whether you're an IT decision-maker, data warehouse professional, database administrator, business intelligence specialist, or database developer. With his help, you can mitigate project risk, improve business alignment, achieve better results--and have fun along the way.


Intelligence-Based Medicine

Intelligence-Based Medicine

Author: Anthony C. Chang

Publisher: Academic Press

Published: 2020-06-27

Total Pages: 549

ISBN-13: 0128233389

DOWNLOAD EBOOK

Intelligence-Based Medicine: Data Science, Artificial Intelligence, and Human Cognition in Clinical Medicine and Healthcare provides a multidisciplinary and comprehensive survey of artificial intelligence concepts and methodologies with real life applications in healthcare and medicine. Authored by a senior physician-data scientist, the book presents an intellectual and academic interface between the medical and the data science domains that is symmetric and balanced. The content consists of basic concepts of artificial intelligence and its real-life applications in a myriad of medical areas as well as medical and surgical subspecialties. It brings section summaries to emphasize key concepts delineated in each section; mini-topics authored by world-renowned experts in the respective key areas for their personal perspective; and a compendium of practical resources, such as glossary, references, best articles, and top companies. The goal of the book is to inspire clinicians to embrace the artificial intelligence methodologies as well as to educate data scientists about the medical ecosystem, in order to create a transformational paradigm for healthcare and medicine by using this emerging new technology. - Covers a wide range of relevant topics from cloud computing, intelligent agents, to deep reinforcement learning and internet of everything - Presents the concepts of artificial intelligence and its applications in an easy-to-understand format accessible to clinicians and data scientists - Discusses how artificial intelligence can be utilized in a myriad of subspecialties and imagined of the future - Delineates the necessary elements for successful implementation of artificial intelligence in medicine and healthcare


Agile Data Science 2.0

Agile Data Science 2.0

Author: Russell Jurney

Publisher: "O'Reilly Media, Inc."

Published: 2017-06-07

Total Pages: 310

ISBN-13: 149196006X

DOWNLOAD EBOOK

Data science teams looking to turn research into useful analytics applications require not only the right tools, but also the right approach if they’re to succeed. With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools. Author Russell Jurney demonstrates how to compose a data platform for building, deploying, and refining analytics applications with Apache Kafka, MongoDB, ElasticSearch, d3.js, scikit-learn, and Apache Airflow. You’ll learn an iterative approach that lets you quickly change the kind of analysis you’re doing, depending on what the data is telling you. Publish data science work as a web application, and affect meaningful change in your organization. Build value from your data in a series of agile sprints, using the data-value pyramid Extract features for statistical models from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future via classification and regression Translate predictions into actions Get feedback from users after each sprint to keep your project on track


Knowledge Driven Development

Knowledge Driven Development

Author: Manoj Kumar Lal

Publisher: Cambridge University Press

Published: 2018-07-12

Total Pages: 327

ISBN-13: 1108475213

DOWNLOAD EBOOK

Provides detailed methodology for digitizing project knowledge by bridging the gap between Waterfall and Agile Methodologies.


Advances in Design, Simulation and Manufacturing IV

Advances in Design, Simulation and Manufacturing IV

Author: Vitalii Ivanov

Publisher: Springer Nature

Published: 2021-05-25

Total Pages: 628

ISBN-13: 3030777197

DOWNLOAD EBOOK

This book reports on topics at the interface between manufacturing and materials engineering, with a special emphasis on product design and advanced manufacturing processes, intelligent solutions for Industry 4.0, covers topics in ICT for engineering education, describes the numerical simulation and experimental studies of milling, honing, burnishing, grinding, boring, and turning, as well as the development and implementation of advanced materials. Based on the 4th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange (DSMIE-2021), held on June 8-11, 2021, in Lviv, Ukraine, this first volume of a 2-volume set provides academics and professionals with extensive information on trends, technologies, challenges and practice-oriented experience in the above-mentioned areas.


Managing Data Science

Managing Data Science

Author: Kirill Dubovikov

Publisher: Packt Publishing Ltd

Published: 2019-11-12

Total Pages: 276

ISBN-13: 1838824561

DOWNLOAD EBOOK

Understand data science concepts and methodologies to manage and deliver top-notch solutions for your organization Key FeaturesLearn the basics of data science and explore its possibilities and limitationsManage data science projects and assemble teams effectively even in the most challenging situationsUnderstand management principles and approaches for data science projects to streamline the innovation processBook Description Data science and machine learning can transform any organization and unlock new opportunities. However, employing the right management strategies is crucial to guide the solution from prototype to production. Traditional approaches often fail as they don't entirely meet the conditions and requirements necessary for current data science projects. In this book, you'll explore the right approach to data science project management, along with useful tips and best practices to guide you along the way. After understanding the practical applications of data science and artificial intelligence, you'll see how to incorporate them into your solutions. Next, you will go through the data science project life cycle, explore the common pitfalls encountered at each step, and learn how to avoid them. Any data science project requires a skilled team, and this book will offer the right advice for hiring and growing a data science team for your organization. Later, you'll be shown how to efficiently manage and improve your data science projects through the use of DevOps and ModelOps. By the end of this book, you will be well versed with various data science solutions and have gained practical insights into tackling the different challenges that you'll encounter on a daily basis. What you will learnUnderstand the underlying problems of building a strong data science pipelineExplore the different tools for building and deploying data science solutionsHire, grow, and sustain a data science teamManage data science projects through all stages, from prototype to productionLearn how to use ModelOps to improve your data science pipelinesGet up to speed with the model testing techniques used in both development and production stagesWho this book is for This book is for data scientists, analysts, and program managers who want to use data science for business productivity by incorporating data science workflows efficiently. Some understanding of basic data science concepts will be useful to get the most out of this book.