Progress in the Science and Technology of the Rare Earths

Progress in the Science and Technology of the Rare Earths

Author: Leroy Eyring

Publisher: Elsevier

Published: 2013-09-17

Total Pages: 373

ISBN-13: 1483185877

DOWNLOAD EBOOK

Progress in the Science and Technology of the Rare Earths, Volume 2 is a collection of papers that details the advancement in various areas of rare earth technology. The coverage of the text includes the practical applications and methods of preparation of rare earth materials. The selection also covers topics about the various properties of rare earths, such as the molecular field model of exchange coupling in rare earth materials; thermodynamic and magnetic properties of the rare earth chalcogenides and pnictides; and structural and solid state chemistry of pure rare earth oxides. The book will be of great use to individuals involved in the research and development of technologies that utilize rare earth materials.


Magnesium Alloys Containing Rare Earth Metals

Magnesium Alloys Containing Rare Earth Metals

Author: L.L. Rokhlin

Publisher: CRC Press

Published: 2003-02-20

Total Pages: 256

ISBN-13: 1482265168

DOWNLOAD EBOOK

Magnesium-based alloys containing rare-earth metals are important structural materials, as they combine low density with high-strength properties. This makes them particularly attractive for industry, especially in cases where the low weight of constructions is critical, as in aircraft and space apparatus construction. One of the remarkable feature


Handbook on the Physics and Chemistry of Rare Earths

Handbook on the Physics and Chemistry of Rare Earths

Author:

Publisher: Elsevier

Published: 2006-12-07

Total Pages: 581

ISBN-13: 0080466729

DOWNLOAD EBOOK

This volume of the Handbook on the Physics and Chemistry of Rare Earth begins with a Dedication to late Professor LeRoy Eyring who had been a committed co-editor of the first 32 volumes of this series. This is followed by four chapters, the first two pertaining to solid state physics and materials science, while the last two chapters describe organic (and inorganic) reactions mediated by tetravalent cerium-based oxidants and by divalent samarium-based reductants. Chapter 227 is devoted to the description of the crystal chemistry and physical properties of rare-earth bismuthides, a class of compounds showing large similarities with the rare-earth antimonides previously reviewed in volume 33 of this series. The fascinating optical and electric properties of rare-earth hydride films displaying a switchable mirror effect as a function of hydrogen pressure, i.e. from a shiny metallic state to a transparent insulating film with increasing pressure, are described in Chapter 228, along with their fabrication methods. Many chemical reactions take advantage of the tetravalent/trivalent Ce(IV)/Ce(III) redox couple and many of its potential applications are presented in Chapter 229, from analytical procedures, to electrosynthesis, and organic and industrial (polymerization) reactions. The last review (Chapter 230) focuses on the synthesis and use of divalent samarium-based reductants in organic and inorganic reactions, mainly on those containing iodide and pentamethylcyclopentadienyl ligands.·Authoritative·Comprehensive·Up-to-date·Critical·Reliable


Extractive Metallurgy of Niobium

Extractive Metallurgy of Niobium

Author: A.K. Suri

Publisher: Routledge

Published: 2017-11-13

Total Pages: 272

ISBN-13: 1351448978

DOWNLOAD EBOOK

The growth and development witnessed today in modern science, engineering, and technology owes a heavy debt to the rare, refractory, and reactive metals group, of which niobium is a member. Extractive Metallurgy of Niobium presents a vivid account of the metal through its comprehensive discussions of properties and applications, resources and resource processing, chemical processing and compound preparation, metal extraction, and refining and consolidation. Typical flow sheets adopted in some leading niobium-producing countries for the beneficiation of various niobium sources are presented, and various chemical processes for producing pure forms of niobium intermediates such as chloride, fluoride, and oxide are discussed. The book also explains how to liberate the metal from its intermediates and describes the physico-chemical principles involved. It is an excellent reference for chemical metallurgists, hydrometallurgists, extraction and process metallurgists, and minerals processors. It is also valuable to a wide variety of scientists, engineers, technologists, and students interested in the topic.