Advances in Evolutionary Computing

Advances in Evolutionary Computing

Author: Ashish Ghosh

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 1001

ISBN-13: 3642189652

DOWNLOAD EBOOK

This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.


Progress in Evolutionary Computation

Progress in Evolutionary Computation

Author: Xin Yao

Publisher: Springer Science & Business Media

Published: 1995-08-10

Total Pages: 328

ISBN-13: 9783540601548

DOWNLOAD EBOOK

This volume contains the best carefully revised full papers selected from the presentations accepted for the AI '93 and AI '94 Workshop on Evolutionary Computation held in Australia. The 21 papers included cover a wide range of topics in the field of evolutionary computation, from constrained function optimization to combinatorial optimization, from evolutionary programming to genetic programming, from robotic strategy learning to co-evolutionary game strategy learning. The papers reflect important recent progress in the field; more than half of the papers come from overseas.


Theory of Evolutionary Computation

Theory of Evolutionary Computation

Author: Benjamin Doerr

Publisher: Springer Nature

Published: 2019-11-20

Total Pages: 527

ISBN-13: 3030294145

DOWNLOAD EBOOK

This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.


Advances in Evolutionary Algorithms

Advances in Evolutionary Algorithms

Author: Chang Wook Ahn

Publisher: Springer

Published: 2007-05-22

Total Pages: 180

ISBN-13: 3540317597

DOWNLOAD EBOOK

Genetic and evolutionary algorithms (GEAs) have often achieved an enviable success in solving optimization problems in a wide range of disciplines. This book provides effective optimization algorithms for solving a broad class of problems quickly, accurately, and reliably by employing evolutionary mechanisms.


Recent Advances in Swarm Intelligence and Evolutionary Computation

Recent Advances in Swarm Intelligence and Evolutionary Computation

Author: Xin-She Yang

Publisher: Springer

Published: 2014-12-27

Total Pages: 295

ISBN-13: 331913826X

DOWNLOAD EBOOK

This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference for graduates, lecturers, engineers and researchers in computer science, evolutionary computing, artificial intelligence, machine learning, computational intelligence, data mining, engineering optimization and designs.


Genetic Algorithms + Data Structures = Evolution Programs

Genetic Algorithms + Data Structures = Evolution Programs

Author: Zbigniew Michalewicz

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 392

ISBN-13: 3662033151

DOWNLOAD EBOOK

Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques is still growing, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science. The book is self-contained and the only prerequisite is basic undergraduate mathematics. This third edition has been substantially revised and extended by three new chapters and by additional appendices containing working material to cover recent developments and a change in the perception of evolutionary computation.


Genetic Algorithms + Data Structures = Evolution Programs

Genetic Algorithms + Data Structures = Evolution Programs

Author: Zbigniew Michalewicz

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 257

ISBN-13: 3662028301

DOWNLOAD EBOOK

'What does your Master teach?' asked a visitor. 'Nothing,' said the disciple. 'Then why does he give discourses?' 'He only points the way - he teaches nothing.' Anthony de Mello, One Minute Wisdom During the last three decades there has been a growing interest in algorithms which rely on analogies to natural processes. The emergence of massively par allel computers made these algorithms of practical interest. The best known algorithms in this class include evolutionary programming, genetic algorithms, evolution strategies, simulated annealing, classifier systems, and neural net works. Recently (1-3 October 1990) the University of Dortmund, Germany, hosted the First Workshop on Parallel Problem Solving from Nature [164]. This book discusses a subclass of these algorithms - those which are based on the principle of evolution (survival of the fittest). In such algorithms a popu lation of individuals (potential solutions) undergoes a sequence of unary (muta tion type) and higher order (crossover type) transformations. These individuals strive for survival: a selection scheme, biased towards fitter individuals, selects the next generation. After some number of generations, the program converges - the best individual hopefully represents the optimum solution. There are many different algorithms in this category. To underline the sim ilarities between them we use the common term "evolution programs" .


Evolutionary Computation: Theory And Applications

Evolutionary Computation: Theory And Applications

Author: Xin Yao

Publisher: World Scientific

Published: 1999-11-22

Total Pages: 376

ISBN-13: 9814518166

DOWNLOAD EBOOK

Evolutionary computation is the study of computational systems which use ideas and get inspiration from natural evolution and adaptation. This book is devoted to the theory and application of evolutionary computation. It is a self-contained volume which covers both introductory material and selected advanced topics. The book can roughly be divided into two major parts: the introductory one and the one on selected advanced topics. Each part consists of several chapters which present an in-depth discussion of selected topics. A strong connection is established between evolutionary algorithms and traditional search algorithms. This connection enables us to incorporate ideas in more established fields into evolutionary algorithms. The book is aimed at a wide range of readers. It does not require previous exposure to the field since introductory material is included. It will be of interest to anyone who is interested in adaptive optimization and learning. People in computer science, artificial intelligence, operations research, and various engineering fields will find it particularly interesting.


Introduction to Evolutionary Algorithms

Introduction to Evolutionary Algorithms

Author: Xinjie Yu

Publisher: Springer Science & Business Media

Published: 2010-06-10

Total Pages: 427

ISBN-13: 1849961298

DOWNLOAD EBOOK

Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.


Evolutionary Computation

Evolutionary Computation

Author: D. Dumitrescu

Publisher: CRC Press

Published: 2000-06-22

Total Pages: 424

ISBN-13: 9780849305887

DOWNLOAD EBOOK

Rapid advances in evolutionary computation have opened up a world of applications-a world rapidly growing and evolving. Decision making, neural networks, pattern recognition, complex optimization/search tasks, scheduling, control, automated programming, and cellular automata applications all rely on evolutionary computation. Evolutionary Computation presents the basic principles of evolutionary computing: genetic algorithms, evolution strategies, evolutionary programming, genetic programming, learning classifier systems, population models, and applications. It includes detailed coverage of binary and real encoding, including selection, crossover, and mutation, and discusses the (m+l) and (m,l) evolution strategy principles. The focus then shifts to applications: decision strategy selection, training and design of neural networks, several approaches to pattern recognition, cellular automata, applications of genetic programming, and more.