Progress in Computational Analysis of Inelastic Structures

Progress in Computational Analysis of Inelastic Structures

Author: E. Stein

Publisher: Springer

Published: 2014-05-04

Total Pages: 291

ISBN-13: 3709126266

DOWNLOAD EBOOK

Five main topics of computational plasticity are treated by experts in the field with latest research results, such as consistent linearizations and finite element techniques, the numerical analysis for stable volume-preserving time-integration at the plastic flow rule, the analysis and finite-element computation of shearband localizations and also of shake down load-factors for arbitrary non-linear kinematic hardening materials. The aim was primarely an integrated representation of the mathematical models, the analysis of numerical methods and the newest algorithms for the consistent and stable computation of large dimensional systems. The significance should be seen in the collection of textbook-like treatments of important new results from wellknown scientists.


Inelastic Analysis of Structures under Variable Loads

Inelastic Analysis of Structures under Variable Loads

Author: Dieter Weichert

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 386

ISBN-13: 9401094217

DOWNLOAD EBOOK

The question whether a structure or a machine component can carry the applied loads, and with which margin of safety, or whether it will become unserviceable due to collapse or excessive inelastic deformations, has always been a major concern for civil and mechanical engineers. The development of methods to answer this technologically crucial question without analysing the evolution of the system under varying loads, has a long tradition that can be traced back even to the times of emerging mechanical sciences in the early 17th century. However, the scientific foundations of the theories underlying these methods, nowadays frequently called "direct", were established sporadically in the Thirties of the 20th century and systematically and rigorously in the Fifties. Further motivations for the development of direct analysis techniques in applied mechanics of solids and structures arise from the circumstance that in many engineering situations the external actions fluctuate according to time histories not a priori known except for some essential features, e.g. variation intervals. In such situations the critical events (or "limit states") to consider, besides plastic collapse, are incremental collapse (or "ratchetting") and alternating plastic yielding, namely lack of "shakedown". Non evolutionary, direct methods for ultimate limit state analysis of structures subjected to variably-repeated external actions are the objectives of most papers collected in this book, which also contains a few contributions on related topics.


Inelastic Behaviour of Structures under Variable Loads

Inelastic Behaviour of Structures under Variable Loads

Author: Zenon Mróz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 501

ISBN-13: 9401102716

DOWNLOAD EBOOK

This collection of papers is a state of the art presentation of theories and methods related to the problem of the behaviour of mechanical structures under variable loads beyond their elastic limit In particular, the problems of shakedown, ratchetting, transient and asymptotic cyclic states are addressed. The volume is composed of four chapters devoted to material modelling for cyclic loading conditions; general theory of accommodated states of structures; effects of changes of the geometry on the inelastic structural response; and numerical techniques with applications to particular engineering problems. It was aimed to provide a unified approach in order to understand both inelastic material and structural response under variable loading conditions. The attempt to extend the classical shakedown theory of Melan and Koiter to geometrically non-linear problems is presented in several papers. The industrial application of cyclic plasticity to the analysis and the design of pressure bellows, compensators, turbine disks, or flange connections under thermal and pressure cycles illustrates the great potential of the numerical techniques developed for this purpose using mostly min-max approaches. The treatment of railway problems and the analysis and optimisation of pavements are further examples of important areas of applications. Emphasis was laid on approaches that take into account the fact that loading histories are often not precisely known Therefore, the center of interest lies in other than step by step calculation methods.


Direct Methods for Limit State of Materials and Structures

Direct Methods for Limit State of Materials and Structures

Author: Giovanni Garcea

Publisher: Springer Nature

Published: 2023-08-23

Total Pages: 295

ISBN-13: 3031291220

DOWNLOAD EBOOK

This book provides an overview of direct methods, such as limit and shakedown analysis, which are intended for avoiding cumbersome step-by-step calculations to determine the limit states of mechanical structures under monotone, cyclic or variable actions with unknown loading history. The book comprises several contributions that demonstrate how tremendous advances in numerical methods, especially in optimization, have contributed to the success of direct methods and their applicability to practical engineering problems in structural mechanics and mechanics of materials. The contents reflect the outcomes of the workshop “Direct Methods for Limit State of Materials and Structures,” held in Cosenza, Italy in June 2022.


Inelastic Analysis of Solids and Structures

Inelastic Analysis of Solids and Structures

Author: M. Kojic

Publisher: Springer Science & Business Media

Published: 2005-07-28

Total Pages: 419

ISBN-13: 3540265074

DOWNLOAD EBOOK

Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions. The book describes experimental observations and principles of mechanics, and efficient computational algorithms for stress calculations as typically performed in finite element analysis. The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials. The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations. Many solved examples are presented, which are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.


Computational Plasticity

Computational Plasticity

Author: Mao-Hong Yu

Publisher: Springer Science & Business Media

Published: 2012-12-02

Total Pages: 550

ISBN-13: 3642245900

DOWNLOAD EBOOK

“Computational Plasticity with Emphasis on the Application of the Unified Strength Theory” explores a new and important branch of computational mechanics and is the third book in a plasticity series published by Springer. The other two are: Generalized Plasticity, Springer: Berlin, 2006; and Structural Plasticity, Springer and Zhejiang University Press: Hangzhou, 2009. This monograph describes the unified strength theory and associated flow rule, the implementation of these basic theories in computational programs, and shows how a series of results can be obtained by using them. The unified strength theory has been implemented in several special nonlinear finite-element programs and commercial Finite Element Codes by individual users and corporations. Many new and interesting findings for beams, plates, underground caves, excavations, strip foundations, circular foundations, slop, underground structures of hydraulic power stations, pumped-storage power stations, underground mining, high-velocity penetration of concrete structures, ancient structures, and rocket components, along with relevant computational results, are presented. This book is intended for graduate students, researchers and engineers working in solid mechanics, engineering and materials science. The theories and methods provided in this book can also be used for other computer codes and different structures. More results can be obtained, which put the potential strength of the material to better use, thus offering material-saving and energy-saving solutions. Mao-Hong Yu is a professor at the Department of Civil Engineering at Xi'an Jiaotong University, Xi'an, China.


Computational Science - ICCS 2002

Computational Science - ICCS 2002

Author: Peter M.A. Sloot

Publisher: Springer

Published: 2003-08-01

Total Pages: 1132

ISBN-13: 3540460438

DOWNLOAD EBOOK

Computational Science is the scienti?c discipline that aims at the development and understanding of new computational methods and techniques to model and simulate complex systems. The area of application includes natural systems – such as biology, envir- mental and geo-sciences, physics, and chemistry – and synthetic systems such as electronics and ?nancial and economic systems. The discipline is a bridge b- ween ‘classical’ computer science – logic, complexity, architecture, algorithms – mathematics, and the use of computers in the aforementioned areas. The relevance for society stems from the numerous challenges that exist in the various science and engineering disciplines, which can be tackled by advances made in this ?eld. For instance new models and methods to study environmental issues like the quality of air, water, and soil, and weather and climate predictions through simulations, as well as the simulation-supported development of cars, airplanes, and medical and transport systems etc. Paraphrasing R. Kenway (R.D. Kenway, Contemporary Physics. 1994): ‘There is an important message to scientists, politicians, and industrialists: in the future science, the best industrial design and manufacture, the greatest medical progress, and the most accurate environmental monitoring and forecasting will be done by countries that most rapidly exploit the full potential ofcomputational science’. Nowadays we have access to high-end computer architectures and a large range of computing environments, mainly as a consequence of the enormous s- mulus from the various international programs on advanced computing, e.g.


Computer Science Handbook

Computer Science Handbook

Author: Allen B. Tucker

Publisher: CRC Press

Published: 2004-06-28

Total Pages: 2742

ISBN-13: 0203494458

DOWNLOAD EBOOK

When you think about how far and fast computer science has progressed in recent years, it's not hard to conclude that a seven-year old handbook may fall a little short of the kind of reference today's computer scientists, software engineers, and IT professionals need. With a broadened scope, more emphasis on applied computing, and more than 70 chap


New Developments in Contact Problems

New Developments in Contact Problems

Author: Peter Wriggers

Publisher: Springer Science & Business Media

Published: 1999-11-22

Total Pages: 264

ISBN-13: 9783211831540

DOWNLOAD EBOOK

The book gives an overview on formulation, mathematical analysis and numerical solution procedures of contact problems. In this respect the book should be of value to applied mathematicians and engineers who are concerned with contact mechanics.