Understanding Computation

Understanding Computation

Author: Tom Stuart

Publisher: "O'Reilly Media, Inc."

Published: 2013-05-15

Total Pages: 389

ISBN-13: 144933010X

DOWNLOAD EBOOK

Finally, you can learn computation theory and programming language design in an engaging, practical way. Understanding Computation explains theoretical computer science in a context you’ll recognize, helping you appreciate why these ideas matter and how they can inform your day-to-day programming. Rather than use mathematical notation or an unfamiliar academic programming language like Haskell or Lisp, this book uses Ruby in a reductionist manner to present formal semantics, automata theory, and functional programming with the lambda calculus. It’s ideal for programmers versed in modern languages, with little or no formal training in computer science. Understand fundamental computing concepts, such as Turing completeness in languages Discover how programs use dynamic semantics to communicate ideas to machines Explore what a computer can do when reduced to its bare essentials Learn how universal Turing machines led to today’s general-purpose computers Perform complex calculations, using simple languages and cellular automata Determine which programming language features are essential for computation Examine how halting and self-referencing make some computing problems unsolvable Analyze programs by using abstract interpretation and type systems


What Can Be Computed?

What Can Be Computed?

Author: John MacCormick

Publisher: Princeton University Press

Published: 2018-05-01

Total Pages: 404

ISBN-13: 0691170665

DOWNLOAD EBOOK

An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com


Introduction to Computation and Programming Using Python, second edition

Introduction to Computation and Programming Using Python, second edition

Author: John V. Guttag

Publisher: MIT Press

Published: 2016-08-12

Total Pages: 466

ISBN-13: 0262529629

DOWNLOAD EBOOK

The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.


Scientific Programming and Computer Architecture

Scientific Programming and Computer Architecture

Author: Divakar Viswanath

Publisher: MIT Press

Published: 2017-07-28

Total Pages: 625

ISBN-13: 0262036290

DOWNLOAD EBOOK

A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.


The Elements of Computing Systems

The Elements of Computing Systems

Author: Noam Nisan

Publisher:

Published: 2008

Total Pages: 343

ISBN-13: 0262640686

DOWNLOAD EBOOK

This title gives students an integrated and rigorous picture of applied computer science, as it comes to play in the construction of a simple yet powerful computer system.


Foundations of Computation

Foundations of Computation

Author: Carol Critchlow

Publisher:

Published: 2011

Total Pages: 256

ISBN-13:

DOWNLOAD EBOOK

Foundations of Computation is a free textbook for a one-semester course in theoretical computer science. It has been used for several years in a course at Hobart and William Smith Colleges. The course has no prerequisites other than introductory computer programming. The first half of the course covers material on logic, sets, and functions that would often be taught in a course in discrete mathematics. The second part covers material on automata, formal languages and grammar that would ordinarily be encountered in an upper level course in theoretical computer science.


Introduction to Computing

Introduction to Computing

Author: David Evans

Publisher:

Published: 2011-12-07

Total Pages: 300

ISBN-13: 9780983455752

DOWNLOAD EBOOK

Introduction to Computing is a comprehensive text designed for the CS0 (Intro to CS) course at the college level. It may also be used as a primary text for the Advanced Placement Computer Science course at the high school level.


Machine Organization

Machine Organization

Author: Charles P. Pfleeger

Publisher:

Published: 1982-02-11

Total Pages: 248

ISBN-13:

DOWNLOAD EBOOK

This textbook is for those who want to know more about the relationship between programs and computers. Introductory programming courses tend to gloss over the internal construction of computers and concentrate on programming and algorithm development. Until people have written a few programs, they cannot appreciate the components of any computing system. Programmers eventually need to know something about the internal construction of the computer. As programmers gain experience, they are likely to ask questions like "Why does my program have to be recompiled each time I remove or insert one instruction?" This book deals with this question, and other similar questions, by helping programmers become more sophisticated, more qualified computer users. This book is intended for a one-semester course in machine organization for first- or second-year computer science students.