This paper describes four computer programs developed to assist logging engineers to plan transportation in a forest. The objective of these programs, to be used together, is to find the shortest path through a transportation network from a point of departure to a destination. Three of the programs use the digitizing and plotting capabilities of a programable desk-top calculator system to conveniently enter and store a numerical description of the network to he analyzed. The fourth program solves the problem by an efficient optimization algorithm. The BASIC language programs are described through an example problem, and complete listings are provided.
A multi-disciplinary approach to transportation planning fundamentals The Transportation Planning Handbook is a comprehensive, practice-oriented reference that presents the fundamental concepts of transportation planning alongside proven techniques. This new fourth edition is more strongly focused on serving the needs of all users, the role of safety in the planning process, and transportation planning in the context of societal concerns, including the development of more sustainable transportation solutions. The content structure has been redesigned with a new format that promotes a more functionally driven multimodal approach to planning, design, and implementation, including guidance toward the latest tools and technology. The material has been updated to reflect the latest changes to major transportation resources such as the HCM, MUTCD, HSM, and more, including the most current ADA accessibility regulations. Transportation planning has historically followed the rational planning model of defining objectives, identifying problems, generating and evaluating alternatives, and developing plans. Planners are increasingly expected to adopt a more multi-disciplinary approach, especially in light of the rising importance of sustainability and environmental concerns. This book presents the fundamentals of transportation planning in a multidisciplinary context, giving readers a practical reference for day-to-day answers. Serve the needs of all users Incorporate safety into the planning process Examine the latest transportation planning software packages Get up to date on the latest standards, recommendations, and codes Developed by The Institute of Transportation Engineers, this book is the culmination of over seventy years of transportation planning solutions, fully updated to reflect the needs of a changing society. For a comprehensive guide with practical answers, The Transportation Planning Handbook is an essential reference.
The NACTO Urban Street Design Guide shows how streets of every size can be reimagined and reoriented to prioritize safe driving and transit, biking, walking, and public activity. Unlike older, more conservative engineering manuals, this design guide emphasizes the core principle that urban streets are public places and have a larger role to play in communities than solely being conduits for traffic. The well-illustrated guide offers blueprints of street design from multiple perspectives, from the bird’s eye view to granular details. Case studies from around the country clearly show how to implement best practices, as well as provide guidance for customizing design applications to a city’s unique needs. Urban Street Design Guide outlines five goals and tenets of world-class street design: • Streets are public spaces. Streets play a much larger role in the public life of cities and communities than just thoroughfares for traffic. • Great streets are great for business. Well-designed streets generate higher revenues for businesses and higher values for homeowners. • Design for safety. Traffic engineers can and should design streets where people walking, parking, shopping, bicycling, working, and driving can cross paths safely. • Streets can be changed. Transportation engineers can work flexibly within the building envelope of a street. Many city streets were created in a different era and need to be reconfigured to meet new needs. • Act now! Implement projects quickly using temporary materials to help inform public decision making. Elaborating on these fundamental principles, the guide offers substantive direction for cities seeking to improve street design to create more inclusive, multi-modal urban environments. It is an exceptional resource for redesigning streets to serve the needs of 21st century cities, whose residents and visitors demand a variety of transportation options, safer streets, and vibrant community life.
This book explores the methodological and application developments of network design in transportation and logistics. It identifies trends, challenges and research perspectives in network design for these areas. Network design is a major class of problems in operations research where network flow, combinatorial and mixed integer optimization meet. The analysis and planning of transportation and logistics systems continues to be one of the most important application areas of operations research. Networks provide the natural way of depicting such systems, so the optimal design and operation of networks is the main methodological area of operations research that is used for the analysis and planning of these systems. This book defines the current state of the art in the general area of network design, and then turns to its applications to transportation and logistics. New research challenges are addressed. Network Design with Applications to Transportation and Logistics is divided into three parts. Part I examines basic design problems including fixed-cost network design and parallel algorithms. After addressing the basics, Part II focuses on more advanced models. Chapters cover topics such as multi-facility network design, flow-constrained network design, and robust network design. Finally Part III is dedicated entirely to the potential application areas for network design. These areas range from rail networks, to city logistics, to energy transport. All of the chapters are written by leading researchers in the field, which should appeal to analysts and planners.
The Global Street Design Guide is a timely resource that sets a global baseline for designing streets and public spaces and redefines the role of streets in a rapidly urbanizing world. The guide will broaden how to measure the success of urban streets to include: access, safety, mobility for all users, environmental quality, economic benefit, public health, and overall quality of life. The first-ever worldwide standards for designing city streets and prioritizing safety, pedestrians, transit, and sustainable mobility are presented in the guide. Participating experts from global cities have helped to develop the principles that organize the guide. The Global Street Design Guide builds off the successful tools and tactics defined in NACTO's Urban Street Design Guide and Urban Bikeway Design Guide while addressing a variety of street typologies and design elements found in various contexts around the world.
NACTO's Urban Bikeway Design Guide quickly emerged as the preeminent resource for designing safe, protected bikeways in cities across the United States. It has been completely re-designed with an even more accessible layout. The Guide offers updated graphic profiles for all of its bicycle facilities, a subsection on bicycle boulevard planning and design, and a survey of materials used for green color in bikeways. The Guide continues to build upon the fast-changing state of the practice at the local level. It responds to and accelerates innovative street design and practice around the nation.
This guide was written as a quick primer for transportation professionals and analysts who assess the impacts of proposed transportation actions on communities. It outlines the community impact assessment process, highlights critical areas that must be examined, identifies basic tools and information sources, and stimulates the thought-process related to individual projects. In the past, the consequences of transportation investments on communities have often been ignored or introduced near the end of a planning process, reducing them to reactive considerations at best. The goals of this primer are to increase awareness of the effects of transportation actions on the human environment and emphasize that community impacts deserve serious attention in project planning and development-attention comparable to that given the natural environment. Finally, this guide is intended to provide some tips for facilitating public involvement in the decision making process.
The purpose of this manual is to provide clear and helpful information for maintaining gravel roads. Very little technical help is available to small agencies that are responsible for managing these roads. Gravel road maintenance has traditionally been "more of an art than a science" and very few formal standards exist. This manual contains guidelines to help answer the questions that arise concerning gravel road maintenance such as: What is enough surface crown? What is too much? What causes corrugation? The information is as nontechnical as possible without sacrificing clear guidelines and instructions on how to do the job right.